Skip to main content

AGROBEST: A Highly Efficient Agrobacterium-Mediated Transient Expression System in Arabidopsis Seedlings

  • Protocol
  • First Online:
Plant Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2379))

Abstract

Agrobacterium-mediated transient transformation for gene expression is a simple and fast method to analyze transgene functions in plants. Agroinfiltration in leaves of Nicotiana benthamiana is a common method for transient expression. However, agroinfiltration in leaves of Arabidopsis thaliana is challenging due to the low and variable efficiency. Here, we describe procedures of a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation) for gene expression in A. thaliana seedlings. High efficiency of AGROBEST has been achieved by virulence (vir) gene pre-induction of a specific disarmed Agrobacterium tumefaciens strain C58C1(pTiB6S3ΔT)H followed by co-cultivation with Arabidopsis seedlings in an optimized medium with AB salts and buffered acidic plant culture medium. The stable acidic medium largely increases Agrobacterium-mediated transient expression levels and reduces plant defense responses, suggesting that AGROBEST enables high transient expression efficiency by compromising plant immunity. In summary, AGROBEST is a simple, fast, reliable, and robust transient expression system offering a quick and convenient method to observe protein localization, protein–protein interactions, promoter activities, and gene functional studies in Arabidopsis seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hwang HH, Yu M, Lai EM (2017) Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 15:e0186

    Article  Google Scholar 

  2. McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  CAS  Google Scholar 

  3. Wu CF, Lin JS, Shaw GC, Lai EM (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8:e1002938

    Article  Google Scholar 

  4. Christie PJ, Whitaker N, Gonzalez-Rivera C (2014) Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843:1578–1591

    Article  CAS  Google Scholar 

  5. Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52

    Article  Google Scholar 

  6. Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  CAS  Google Scholar 

  7. Chisholm ST, Dahlbeck D, Krishnamurthy N, Day B, Sjolander K, Staskawicz BJ (2005) Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proc Natl Acad Sci U S A 102:2087–2092

    Article  CAS  Google Scholar 

  8. Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  CAS  Google Scholar 

  9. Li JF, Park E, von Arnim AG, Nebenfuhr A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    Article  Google Scholar 

  10. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  Google Scholar 

  11. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  12. Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  Google Scholar 

  13. Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14:54–61

    Article  CAS  Google Scholar 

  14. Tsuda K, Qi Y, Nguyen LV, Bethke G, Tsuda Y, Glazebrook J, Katagiri F (2012) An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J 69:713–719

    Article  CAS  Google Scholar 

  15. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  Google Scholar 

  16. Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    Article  CAS  Google Scholar 

  17. Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19

    Article  Google Scholar 

  18. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  CAS  Google Scholar 

  19. Besnard J, Pratelli R, Zhao CS, Sonawala U, Collakova E, Pilot G, Okumoto S (2016) UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. J Exp Bot 67:6385–6397

    Article  CAS  Google Scholar 

  20. Yekondi S, Liang FC, Okuma E, Radziejwoski A, Mai HW, Swain S, Singh P, Gauthier M, Chien HC, Murata Y, Zimmerli L (2018) Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure. New Phytol 218:253–268

    Article  CAS  Google Scholar 

  21. Besnard J, Zhao CS, Avice JC, Vitha S, Hyodo A, Pilot G, Okumoto S (2018) Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. J Exp Bot 69:5221–5232

    Article  CAS  Google Scholar 

  22. Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP, Wu SH (2016) LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7:10

    Google Scholar 

  23. Huang WY, Wu YC, Pu HY, Wang Y, Jang GJ, Wu SH (2017) Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis. Plant Cell Environ 40:1735–1747

    Article  CAS  Google Scholar 

  24. Cho HY, Wen TN, Wang YT, Shih MC (2016) Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J Exp Bot 67:2745–2760

    Article  CAS  Google Scholar 

  25. Cheng MC, Kuo WC, Wang YM, Chen HY, Lin TP (2017) UBC18 mediates ERF1 degradation under light-dark cycles. New Phytol 213:1156–1167

    Article  CAS  Google Scholar 

  26. Nicaise V, Candresse T (2017) Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol Plant Pathol 18:878–886

    Article  CAS  Google Scholar 

  27. Yang L, Mo WL, Yu XL, Yao N, Zhou Z, Fan XL, Zhang L, Piao MX, Li SM, Yang DH, Lin CT, Zuo ZC (2018) Reconstituting Arabidopsis CRY2 signaling pathway in mammalian cells reveals regulation of transcription by direct binding of CRY2 to DNA. Cell Rep 24:585–593

    Article  CAS  Google Scholar 

  28. Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chu YS, Yeh HH (2018) Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 14:31

    Article  Google Scholar 

  29. Groenewold MK, Hebecker S, Fritz C, Czolkoss S, Wiesselmann M, Heinz DW, Jahn D, Narberhaus F, Aktas M, Moser J (2019) Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB. Mol Microbiol 111:269–286

    Article  CAS  Google Scholar 

  30. Huang FC, Fu BJ, Liu YT, Chang YR, Chi SF, Chien PR, Huang SC, Hwang HH (2018) Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 participate in Agrobacterium-mediated plant transformation. Int J Mol Sci 19:21

    Google Scholar 

  31. Moller P, Busch P, Sauerbrei B, Kraus A, Forstner KU, Wen TN, Overloper A, Lai EM, Narberhaus F (2019) The RNase YbeY is vital for ribosome maturation, stress resistance, and virulence of the natural genetic engineer Agrobacterium tumefaciens. J Bacteriol 201:18

    Article  Google Scholar 

  32. Shih PY, Chou SJ, Muller C, Halkier BA, Deeken R, Lai EM (2018) Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation. Mol Plant Pathol 19:1956–1970

    Article  CAS  Google Scholar 

  33. Wang YC, Yu M, Shih PY, Wu HY, Lai EM (2018) Stable pH suppresses defense signaling and is the key to enhance Agrobacterium-mediated transient expression in Arabidopsis seedlings. Sci Rep 8:17071

    Article  Google Scholar 

  34. Wu HY, Chen CY, Lai EM (2014) Expression and functional characterization of the Agrobacterium VirB2 amino acid substitution variants in T-pilus biogenesis, virulence, and transient transformation efficiency. PLoS One 9:e101142

    Article  Google Scholar 

  35. Narasimhulu SB, Deng XB, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717

    Article  CAS  Google Scholar 

  37. Kim K-W, Franceschi V, Davin L, Lewis N (2006) β-glucuronidase as reporter gene. In: Salinas J, Sanchez-Serrano J (eds) Arabidopsis protocols, Methods in molecular biology, vol 323. Humana Press, Hoboken, NJ, pp 263–273

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erh-Min Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, HY., Lai, EM. (2022). AGROBEST: A Highly Efficient Agrobacterium-Mediated Transient Expression System in Arabidopsis Seedlings. In: Zurbriggen, M.D. (eds) Plant Synthetic Biology. Methods in Molecular Biology, vol 2379. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1791-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1791-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1790-8

  • Online ISBN: 978-1-0716-1791-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics