Skip to main content

Exploiting the Gal4/UAS System as Plant Orthogonal Molecular Toolbox to Control Reporter Expression in Arabidopsis Protoplasts

  • Protocol
  • First Online:
Plant Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2379))

Abstract

The ability of protein domains to fold independently from the rest of the polypeptide is the principle governing the generation of fusion proteins with customized functions. A clear example is the split transcription factor system based on the yeast GAL4 protein and its cognate UAS enhancer. The rare occurrence of the UAS element in the transcriptionally sensitive regions of the Arabidopsis genome makes this transcription factor an ideal orthogonal platform to control reporter induction. Moreover, heterodimeric transcriptional complexes can be generated by exploiting posttranslational modifications hampering or promoting the interaction between GAL4-fused transcriptional partners, whenever this leads to the reconstitution of a fully functional GAL4 factor.

The assembly of multiple engineered proteins into a synthetic transcriptional complex requires preliminary testing, before its components can be stably introduced into the plant genome. Mesophyll protoplast transformation represents a fast and reliable technique to test and optimize synthetic regulatory modules. Remarkable properties are the possibility to transform different combinations of plasmids (co-transformation) and the physiological resemblance of these isolated cells with the original tissue.

Here we describe an extensive protocol to produce and exploit Arabidopsis mesophyll protoplasts to investigate the transcriptional output of GAL4/UAS-based complexes that are sensitive to posttranslational protein modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312. https://doi.org/10.1016/S1357-2725(97)00085-X

    Article  CAS  PubMed  Google Scholar 

  2. Dimitrova N, Zamudio JR, Jong RM et al (2012) A synthetic biology framework for programming eukaryotic transcription functions. Cell 150:647–658. https://doi.org/10.1371/journal.pone.0178059

    Article  CAS  Google Scholar 

  3. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Article  CAS  Google Scholar 

  4. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246. https://doi.org/10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

  5. Klar AJS, Halvorson HO (1974) Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae. Mol Gen Genet 135:203–212. https://doi.org/10.1007/BF00268616

    Article  CAS  PubMed  Google Scholar 

  6. Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231:699–704

    Article  CAS  Google Scholar 

  7. Guarente L, Yocum RR, Gifford P (1982) A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A 79:7410–7414. https://doi.org/10.1073/pnas.79.23.7410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paiano A, Margiotta A, De Luca M, Bucci C (2019) Yeast two-hybrid assay to identify interacting proteins. Curr Protoc Protein Sci 95:1–33. https://doi.org/10.1002/cpps.70

    Article  CAS  Google Scholar 

  9. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15. https://doi.org/10.1002/gene.10150

    Article  CAS  PubMed  Google Scholar 

  10. Ogura E, Okuda Y, Kondoh H, Kamachi Y (2009) Adaptation of GAL4 activators for GAL4 enhancer trapping in zebrafish. Dev Dyn 238:641–655. https://doi.org/10.1002/dvdy.21863

    Article  CAS  PubMed  Google Scholar 

  11. Waki T, Miyashima S, Nakanishi M et al (2013) A GAL4-based targeted activation tagging system in Arabidopsis thaliana. Plant J 73:357–367. https://doi.org/10.1111/tpj.12049

    Article  CAS  PubMed  Google Scholar 

  12. Iacopino S, Jurinovich S, Cupellini L et al (2019) A synthetic oxygen sensor for plants based on animal hypoxia signaling. Plant Physiol 179:986–1000. https://doi.org/10.1104/pp.18.01003

    Article  CAS  PubMed  Google Scholar 

  13. Wu F-H, Shen S-C, Lee L-Y et al (2009) Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16. https://doi.org/10.1186/1746-4811-5-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. https://doi.org/10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  15. Samodelov SL, Beyer HM, Guo X et al (2016) Strigoquant: a genetically encoded biosensor for quantifying Strigolactone activity and specificity. Sci Adv 2:1–9. https://doi.org/10.1126/sciadv.1601266

    Article  CAS  Google Scholar 

  16. Wend S, Bosco CD, Kämpf MM et al (2013) A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Sci Rep 3:2052. https://doi.org/10.1038/srep02052

    Article  PubMed  PubMed Central  Google Scholar 

  17. Teige M, Scheikl E, Eulgem T et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152. https://doi.org/10.1016/j.molcel.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  18. Hansen LL, van Ooijen G (2016) Rapid analysis of circadian phenotypes in arabidopsis protoplasts transfected with a luminescent clock reporter. J Vis Exp 115:54586. https://doi.org/10.3791/54586

    Article  CAS  Google Scholar 

  19. Confraria A, Baena-González E (2016) In: Duque P (ed) Using Arabidopsis protoplasts to study cellular responses to environmental stress BT—environmental responses in plants: methods and protocols. Springer, New York, pp 247–269

    Google Scholar 

  20. Sambrook J (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  21. Hellens RP, Allan AC, Friel EN et al (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:1–14. https://doi.org/10.1186/1746-4811-1-13

    Article  CAS  Google Scholar 

  22. Ehlert A, Weltmeier F, Wang X et al (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900. https://doi.org/10.1111/j.1365-313X.2006.02731.x

    Article  CAS  PubMed  Google Scholar 

  23. Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant Gateway vectors. Plant Physiol 145:1144–1154. https://doi.org/10.1104/pp.107.106989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shuman S (1994) Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J Biol Chem 269:32678–32684

    Article  CAS  Google Scholar 

  25. Misra T, Baccino-calace M, Meyenhofer F et al (2014) Independent function of two destruction domains in hypoxia-inducible factor-?? Chains activated by prolyl hydroxylation. Nature 2:1–8. https://doi.org/10.1093/emboj/20.18.5197

    Article  Google Scholar 

  26. Karimi M, Inze D, Depicker A et al (2002) GATEWAY vectors for agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195. https://doi.org/10.1016/S1360-1385(02)02251-3

    Article  CAS  PubMed  Google Scholar 

  27. Grefen C, Donald N, Hashimoto K et al (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64:355–365. https://doi.org/10.1111/j.1365-313X.2010.04322.x

    Article  CAS  PubMed  Google Scholar 

  28. Schaumberg KA, Antunes MS, Kassaw TK et al (2015) Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat Methods 13:94–100. https://doi.org/10.1038/nmeth.3659

    Article  CAS  PubMed  Google Scholar 

  29. Kay R, Chan AMY, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science (80-) 236:1299–1302. https://doi.org/10.1126/science.236.4806.1299

    Article  CAS  Google Scholar 

  30. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28. https://doi.org/10.1016/0378-1119(90)90336-P

    Article  CAS  PubMed  Google Scholar 

  31. Grantham R, Gautier C, Gouy M et al (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8:197. https://doi.org/10.1093/nar/8.1.197-c

    Article  Google Scholar 

  32. dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036–5044. https://doi.org/10.1093/nar/gkh834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Athey J, Alexaki A, Osipova E et al (2017) A new and updated resource for codon usage tables. BMC Bioinform 18:1–10. https://doi.org/10.1186/s12859-017-1793-7

    Article  CAS  Google Scholar 

  34. Gaspar P, Oliveira JL, Frommlet J et al (2012) EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics 28:2683–2684. https://doi.org/10.1093/bioinformatics/bts465

    Article  CAS  PubMed  Google Scholar 

  35. McWilliam H, Li W, Uludag M et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600. https://doi.org/10.1093/nar/gkt376

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chin JX, Chung BK-S, Lee D-Y (2014) Codon optimization OnLine (COOL): a web-based multi-objective optimization platform for synthetic gene design. Bioinformatics 30:2210–2212. https://doi.org/10.1093/bioinformatics/btu192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Giuntoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iacopino, S., Licausi, F., Giuntoli, B. (2022). Exploiting the Gal4/UAS System as Plant Orthogonal Molecular Toolbox to Control Reporter Expression in Arabidopsis Protoplasts. In: Zurbriggen, M.D. (eds) Plant Synthetic Biology. Methods in Molecular Biology, vol 2379. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1791-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1791-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1790-8

  • Online ISBN: 978-1-0716-1791-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics