Skip to main content

Retroviral Transduction of NKT Hybridoma Cells

  • Protocol
  • First Online:
Invariant Natural Killer T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2388))

Abstract

Natural killer T (NKT) cells have been shown to bridge innate and adaptive immunity. However, the rare population and hard-to-transfect of primary NKT cells slow down our understanding of cellular and molecular mechanisms of NKT development and function. To overcome these drawbacks, NKT hybridomas, especially DN32.D3 cells, are applied to study NKT cells in vitro and becoming a valuable tool. Here, we describe the method in the genetic manipulation of DN32.D3 cells by retrovirus, including the generation and concentration of retrovirus, retroviral transduction of DN32.D3 cells, and evaluation of transduction efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900. https://doi.org/10.1146/annurev.immunol.23.021704.115742

    Article  CAS  PubMed  Google Scholar 

  2. Nishioka Y, Masuda S, Tomaru U et al (2018) CD1d-restricted type II NKT cells reactive with endogenous hydrophobic peptides. Front Immunol 9:548. https://doi.org/10.3389/fimmu.2018.00548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crosby CM, Kronenberg M (2018) Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol 18(9):559–574. https://doi.org/10.1038/s41577-018-0034-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bassiri H, Das R, Nichols KE (2013) Invariant NKT cells: killers and conspirators against cancer. Onco Targets Ther 2(12):e27440. https://doi.org/10.4161/onci.27440

    Article  Google Scholar 

  5. Kakimi K, Guidotti LG, Koezuka Y et al (2000) Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192(7):921–930. https://doi.org/10.1084/jem.192.7.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geissmann F, Cameron TO, Sidobre S et al (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3(4):e113. https://doi.org/10.1371/journal.pbio.0030113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629. https://doi.org/10.1126/science.278.5343.1626

    Article  CAS  PubMed  Google Scholar 

  8. Shimamura M, Ohteki T, Beutner U et al (1997) Lack of directed V alpha 14-J alpha 281 rearrangements in NK1+ T cells. Eur J Immunol 27(6):1576–1579. https://doi.org/10.1002/eji.1830270638

    Article  CAS  PubMed  Google Scholar 

  9. Kronenberg M (2014) When less is more: T lymphocyte populations with restricted antigen receptor diversity. J Immunol 193(3):975–976. https://doi.org/10.4049/jimmunol.1401491

    Article  CAS  PubMed  Google Scholar 

  10. Das R, Sant'Angelo DB, Nichols KE (2010) Transcriptional control of invariant NKT cell development. Immunol Rev 238(1):195–215. https://doi.org/10.1111/j.1600-065X.2010.00962.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lynch L, Nowak M, Varghese B et al (2012) Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37(3):574–587. https://doi.org/10.1016/j.immuni.2012.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santodomingo-Garzon T, Swain MG (2011) Role of NKT cells in autoimmune liver disease. Autoimmun Rev 10(12):793–800. https://doi.org/10.1016/j.autrev.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  13. Lynch L, O'Shea D, Winter DC et al (2009) Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 39(7):1893–1901. https://doi.org/10.1002/eji.200939349

    Article  CAS  PubMed  Google Scholar 

  14. Sebode M, Wigger J, Filpe P et al (2019) Inflammatory phenotype of intrahepatic Sulfatide-reactive type II NKT cells in humans with autoimmune hepatitis. Front Immunol 10:1065. https://doi.org/10.3389/fimmu.2019.01065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh AK, Tripathi P, Cardell SL (2018) Type II NKT cells: an elusive population with immunoregulatory properties. Front Immunol 9:1969. https://doi.org/10.3389/fimmu.2018.01969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J Exp Med 180(3):1097–1106. https://doi.org/10.1084/jem.180.3.1097

    Article  CAS  PubMed  Google Scholar 

  17. Bendelac A, Lantz O, Quimby ME et al (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268(5212):863–865. https://doi.org/10.1126/science.7538697

    Article  CAS  PubMed  Google Scholar 

  18. Brutkiewicz RR, Bennink JR, Yewdell JW et al (1995) TAP-independent, beta 2-microglobulin-dependent surface expression of functional mouse CD1.1. J Exp Med 182(6):1913–1919. https://doi.org/10.1084/jem.182.6.1913

    Article  CAS  PubMed  Google Scholar 

  19. Kain L, Webb B, Anderson BL et al (2014) The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41(4):543–554. https://doi.org/10.1016/j.immuni.2014.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou D, Cantu C 3rd, Sagiv Y et al (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303(5657):523–527. https://doi.org/10.1126/science.1092009

    Article  CAS  PubMed  Google Scholar 

  21. Freigang S, Zadorozhny V, McKinney MK et al (2010) Fatty acid amide hydrolase shapes NKT cell responses by influencing the serum transport of lipid antigen in mice. J Clin Invest 120(6):1873–1884. https://doi.org/10.1172/JCI40451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Albu DI, VanValkenburgh J, Morin N et al (2011) Transcription factor Bcl11b controls selection of invariant natural killer T-cells by regulating glycolipid presentation in double-positive thymocytes. Proc Natl Acad Sci U S A 108(15):6211–6216. https://doi.org/10.1073/pnas.1014304108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jordan-Williams KL, Poston S, Taparowsky EJ (2013) BATF regulates the development and function of IL-17 producing iNKT cells. BMC Immunol 14:16. https://doi.org/10.1186/1471-2172-14-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang SH, Kim SJ, Kim N et al (2008) NKT cells inhibit the development of experimental crescentic glomerulonephritis. J Am Soc Nephrol 19(9):1663–1671. https://doi.org/10.1681/ASN.2007101117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Yun C, Gao B et al (2017) The lysine acetyltransferase GCN5 is required for iNKT cell development through EGR2 acetylation. Cell Rep 20(3):600–612. https://doi.org/10.1016/j.celrep.2017.06.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Eijkeren RJ, Morris I, Borgman A et al (2020) Cytokine output of adipocyte-iNKT cell interplay is skewed by a lipid-rich microenvironment. Front Endocrinol (Lausanne) 11:479. https://doi.org/10.3389/fendo.2020.00479

    Article  Google Scholar 

  27. Huh JY, Kim JI, Park YJ et al (2013) A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol Cell Biol 33(2):328–339. https://doi.org/10.1128/MCB.00552-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Zhang X, Wang Y et al (2019) PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision. Cell Mol Immunol 16(9):746–756. https://doi.org/10.1038/s41423-018-0059-2

    Article  CAS  PubMed  Google Scholar 

  29. Kim HS, Kim HS, Lee CW et al (2010) T cell Ig domain and mucin domain 1 engagement on invariant NKT cells in the presence of TCR stimulation enhances IL-4 production but inhibits IFN-gamma production. J Immunol 184(8):4095–4106. https://doi.org/10.4049/jimmunol.0901991

    Article  CAS  PubMed  Google Scholar 

  30. Yu B, Zhang K, Milner JJ et al (2017) Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nat Immunol 18(5):573–582. https://doi.org/10.1038/ni.3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang M, Li D, Chang Z et al (2015) PDK1 orchestrates early NK cell development through induction of E4BP4 expression and maintenance of IL-15 responsiveness. J Exp Med 212(2):253–265. https://doi.org/10.1084/jem.20141703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shang Y, Coppo M, He T et al (2016) The transcriptional repressor Hes1 attenuates inflammation by regulating transcription elongation. Nat Immunol 17(8):930–937. https://doi.org/10.1038/ni.3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naviaux RK, Costanzi E, Haas M et al (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70(8):5701–5705. https://doi.org/10.1128/JVI.70.8.5701-5705.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ciuculescu MF, Brendel C, Harris CE et al (2014) Retroviral transduction of murine and human hematopoietic progenitors and stem cells. Methods Mol Biol 1185:287–309. https://doi.org/10.1007/978-1-4939-1133-2_20

    Article  CAS  PubMed  Google Scholar 

  35. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7(12):1063–1066. https://doi.org/10.1038/sj.gt.3301206

    Article  CAS  PubMed  Google Scholar 

  36. Lounkova A, Kosla J, Prikryl D et al (2017) Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A 114(26):E5148–E5E57. https://doi.org/10.1073/pnas.1704750114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Li Bai at the University of Science and Technology of China for the DN32.D3 hybridomas and Dr. Zhongjun Dong at Tsinghua University for the pCL-Eco and pMSCV-ubc-EGFP vectors. This work was supported by grants from the National Key Research and Development Program of China (2017YFA0104500), the National Natural Science Foundation of China (32070897, 31671244, 31872734), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81621001), Beijing Natural Science Foundation (7202079), and the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences, 2019PT320006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, K., Jin, R., Ge, Q. (2021). Retroviral Transduction of NKT Hybridoma Cells. In: Liu, C. (eds) Invariant Natural Killer T-Cells. Methods in Molecular Biology, vol 2388. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1775-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1775-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1774-8

  • Online ISBN: 978-1-0716-1775-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics