Skip to main content

Multi-Objective Optimization Tuning Framework for Kinetic Parameter Selection and Estimation

  • Protocol
  • First Online:
Computational Methods for Estimating the Kinetic Parameters of Biological Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2385))

Abstract

Semi-mechanistic kinetic (i.e., dynamic) models based on first principles are particularly relevant in biology, as they can explain and predict functional behavior that arises from varying concentrations of the cellular components over time. Here, we describe a computational tuning framework to facilitate both the selection of kinetic parameters for these models and its estimation from experimental data. On the one hand, the tuning framework uses multi-objective optimization to generate a model-based set of guidelines for the selection of the kinetic parameters. These parameter values are the required ones to provide a biological system with desired behavior, while fulfilling the design criteria encoded in the optimization problem itself. On the other hand, this framework can also be used to estimate the parameter values of biological systems from experimental data, once the optimization objectives had been defined appropriately. The methodology gives accurate identification results, as it provides clear orientation on the effect of the parameter values over the system’s behavior even under different experimental scenarios. It is particularly useful for easily combining time-course-averaged data and steady-state distribution data. This protocol also addresses aspects related to the appropriate description of the kinetic models and the settings of the software tools. Therefore, it supplies for hands-on testing to evaluate the validity of the underlying technical assumptions of the biological kinetic models.

This work is partially supported by grants MINECO/AEI, EU DPI2017-82896- C2-1-R and MICINN/AEI, EU PID2020-117271RB-C21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Tool available in http://www.mathworks.com/matlabcentral/fileexchange/65145.

  2. 2.

    Tool available in http://www.mathworks.com/matlabcentral/fileexchange/62224.

  3. 3.

    Tool available in http://www.mathworks.com/matlabcentral/fileexchange/65145.

  4. 4.

    Toolbox available in http://www.mathworks.com/matlabcentral/fileexchange/62224.

  5. 5.

    Git repository https://github.com/sb2cl/MOOT_Selection_and_Estimation/.

References

  1. Alon U (2019) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Blasco X, Herrero JM, Reynoso-Meza G, Martínez Iranzo MA (2017) Interactive tool for analyzing multiobjective optimization results with level diagrams. In: Proceedings of the genetic and evolutionary computation conference companion, p 1689–1696

    Google Scholar 

  3. Boada Y, Pitarch J, Vignoni A, Reynoso-Meza G, Picó J (2016) Optimization alternatives for robust model-based design of synthetic biological circuits. IFAC-PapersOnLine 49(7):821–826

    Article  Google Scholar 

  4. Boada Y, Reynoso-Meza G, Vignoni A, Picó J (2016) Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case. BMC Syst Biol 10:27

    Article  Google Scholar 

  5. Boada Y, Vignoni A, Reynoso-Meza G, Picó J (2016) Parameter identification in synthetic biological circuits using multi-objective optimization. IFAC-PapersOnLine 49(26):77–82

    Article  Google Scholar 

  6. Boada Y, Vignoni A, Picó J (2017) Engineered control of genetic variability reveals interplay among quorum sensing, feedback regulation, and biochemical noise. ACS Synth Biol 6(10):1903–1912

    Article  Google Scholar 

  7. Boada Y, Vignoni A, Picó J (2017) Multi-objective identification of synthetic circuits stochastic models using flow cytometry data. In: Proceedings 25th mediterranean conference on control and automation MED, p 1077–1082. https://doi.org/10.1109/MED.2017.7984261

  8. Boada Y, Vignoni A, Picó J (2017) Multi-objective optimization for gene expression noise reduction in a synthetic gene circuit. IFAC-PapersOnLine 50(1):4472–4477. 20th IFAC World Congress

    Google Scholar 

  9. Boada Y, Vignoni A, Alarcon-Ruiz I, Andreu-Vilarroig C, Monfort-Llorens R, Requena A, Picó J (2019) Characterization of gene circuit parts based on multiobjective optimization by using standard calibrated measurements. ChemBioChem 20(20):2653–2665

    Article  CAS  Google Scholar 

  10. Boada Y, Vignoni A, Picó J (2020) Multiobjective identification of a feedback synthetic gene circuit. IEEE Trans Control Syst Tech 28(1):208–223. https://doi.org/10.1109/TCST.2018.2885694

    Article  Google Scholar 

  11. Boada Y, Vignoni A, Picó J, Carbonell P (2020) Extended metabolic biosensor design for dynamic pathway regulation of cell factories. Iscience 23(7):101305

    Article  CAS  Google Scholar 

  12. Chellaboina V, Bhat S, Haddad M, Bernstein D (2009) Modeling and analysis of mass-action kinetics. IEEE Control Syst 29(4):60–78

    Article  Google Scholar 

  13. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    Article  CAS  Google Scholar 

  14. Gorochowski TE, di Bernardo M, Grierson CS (2010) Evolving enhanced topologies for the synchronization of dynamical complex networks. Phys Rev E 81(5):056212

    Article  Google Scholar 

  15. Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43(3):525–546

    Article  Google Scholar 

  16. Higham DJ (2008) Modeling and simulating chemical reactions. SIAM Rev 50(2):347–368

    Article  Google Scholar 

  17. Kelley NJ, Whelan DJ, Kerr E, Apel A, Beliveau R, Scanlon R (2014) Engineering biology to address global problems: synthetic biology markets, needs, and applications. Ind Biotechnol 10(3):140–149

    Article  Google Scholar 

  18. Kumar P, Sinha R, Shukla P (2020) Artificial intelligence and synthetic biology approaches for human gut microbiome. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1850415

  19. Mallik S, Bhadra T, Seth S, Bandyopadhyay S, Chen J (2018) Multi-objective optimization approaches in biological learning system on microarray data. In: Multi-objective optimization, springer, p 159–180

    Google Scholar 

  20. Miettinen K (2012) Nonlinear multiobjective optimization, vol 12. Springer, Berlin

    Google Scholar 

  21. Picó J, Vignoni A, Boada Y (2021) Stochastic differential equations for practical simulation of gene circuits. In: Menolascina F (ed) Synthetic gene circuits, methods in molecular biology, vol 2229. Humana, New York, p 41–90

    Chapter  Google Scholar 

  22. Reynoso-Meza G, Sanchis J, Blasco X, Garcia-Nieto S (2014) Physical programming for preference driven evolutionary multi-objective optimization. Appl Soft Comput 24:341–362

    Article  Google Scholar 

  23. Ruess J, Lygeros J (2015) Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans Model Comput Simul 25(2):8

    Article  Google Scholar 

  24. Sohlberg B, Jacobsen EW (2008) Grey box modelling–branches and experiences. IFAC Proc Volumes 41(2):11415–11420

    Article  Google Scholar 

  25. Vignoni A, Bajur A, Knust E, Sbalzarini IF (2018) Multi-objective identification from fluorescence recovery after photobleaching experiments: understanding morphogenetic regulation of epithelial polarity. IFAC-PapersOnLine 51(19):8–11

    Article  Google Scholar 

  26. Yaman F, Adler A, Beal J (2018) AI challenges in synthetic biology engineering. In: Proceedings of the AAAI conference on artificial intelligence, vol 32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Vignoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boada, Y., Picó, J., Vignoni, A. (2022). Multi-Objective Optimization Tuning Framework for Kinetic Parameter Selection and Estimation. In: Vanhaelen, Q. (eds) Computational Methods for Estimating the Kinetic Parameters of Biological Systems. Methods in Molecular Biology, vol 2385. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1767-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1767-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1766-3

  • Online ISBN: 978-1-0716-1767-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics