Skip to main content

Identification of Synthetic Lethal Interactions Using High-Throughput, Arrayed CRISPR/Cas9-Based Platforms

  • Protocol
  • First Online:
Mapping Genetic Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2381))

Abstract

Over the past two decades, the concept of synthetic lethality (SL) that queries genetic relationships between gene pairs has gradually emerged as one of the best strategies to selectively eliminate cancer cells. Some of the most successful approaches to identify synthetic lethal interactions (SLIs) were largely dependent on pooled screening formats that require heavy validation in order to mitigate false positives. Here, we describe a high-throughput method to identify SLIs using CRISPR-based strategy that covers, high-throughput production of plasmid DNA preparations, lentiviral production, and subsequent cellular transduction using single guide RNAs (sgRNAs). This method could be adopted to query hundreds of SLIs. As an example, we describe the methods associated with building an interaction map for DNA damage and repair (DDR) genes. The use of multiwell plates and image-based quantification allows a comparative measurement of SLIs at a high-resolution on a one-by-one basis. Furthermore, this scalable, arrayed CRISPR screening method can be applied to multiple cancer cell types, and genes of interest, resulting in new functional discoveries that can be exploited therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parameswaran S, Kundapur D, Vizeacoumar FS et al (2019) A road map to personalizing targeted cancer therapies using synthetic lethality. Trends Cancer 5(1):11–29. https://doi.org/10.1016/j.trecan.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham CE, MacAuley MJ, Yadav G et al (2019) Targeting the CINful genome: strategies to overcome tumor heterogeneity. Prog Biophys Mol Biol 147:77–91. https://doi.org/10.1016/j.pbiomolbio.2019.02.006

  3. Paul JM, Templeton SD, Baharani A et al (2014) Building high-resolution synthetic lethal networks: a “Google map” of the cancer cell. Trends Mol Med 20(12):704–715. https://doi.org/10.1016/j.molmed.2014.09.009

  4. Zhan T, Rindtorff N, Betge J et al (2018) CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 55:106–119. https://doi.org/10.1016/j.semcancer.2018.04.001

  5. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8(6):437–449. https://doi.org/10.1038/nrg2085

    Article  CAS  PubMed  Google Scholar 

  6. Hengel SR, Spies MA, Spies M et al (2017) Small molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chem Biol 24(9):1101–1119. https://doi.org/10.1016/j.chembiol.2017.08.027.Small

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsherniak A, Vazquez F, Montgomery PG et al (2017) Defining a cancer dependency map. Cell 170(3):564–576. https://doi.org/10.1016/j.cell.2017.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen JP, Ideker T (2018) Synthetic lethal networks for precision oncology: promises and pitfalls. J Mol Biol 430(18 Pt A):2900–2912. https://doi.org/10.1016/j.jmb.2018.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143.Multiplex

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang T, Wei JJ, Sabatini DM et al (2012) Genetic screens in human cells using the CRISPR-Cas9 system. BMJ Support Palliat Care 2(3):256–263. https://doi.org/10.1136/bmjspcare-2011-000063

    Article  Google Scholar 

  11. Bassik MC, Han K, Jeng EE et al (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 35(5):463–474. https://doi.org/10.1038/nbt.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. SSRN Electron J 343(6166):84–87. https://doi.org/10.4324/9781315853178

    Article  CAS  Google Scholar 

  13. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213). https://doi.org/10.1126/science.1258096

  14. Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2(3):130–143. https://doi.org/10.3978/j.issn.2218-676X.2013.04.02

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113. https://doi.org/10.1038/cr.2008.1

    Article  CAS  PubMed  Google Scholar 

  16. Hart T, Tong AHY, Chan K et al (2017) Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 (Bethesda) 7(8):2719–2727. https://doi.org/10.1534/g3.117.041277

    Article  CAS  Google Scholar 

  17. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins SR, Roguev A, Krogan NJ (2010) Quantitative genetic interaction mapping using the E-MAP approach. Methods Enzymol 470:205–231. https://doi.org/10.1016/S0076-6879(10)70009-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643. https://doi.org/10.1038/nature04670

    Article  CAS  PubMed  Google Scholar 

  20. Tong AHY, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808–813. https://doi.org/10.1126/science.1091317

    Article  CAS  PubMed  Google Scholar 

  21. Metzakopian E, Strong A, Iyer V et al (2017) Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-01766-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Vizeacoumar and Freywald laboratories for their feedback on this chapter. This work is supported by funding support from College of Medicine, University of Saskatchewan to M.J.M. and F.S.V.

Author contribution: F.S.V. and M.J.M. conceived and planned the strategies discussed in the chapter. M.J.M., O.A., and F.S.V. wrote or contributed to the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MacKenzie J. MacAuley or Frederick S. Vizeacoumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

MacAuley, M.J., Abuhussein, O., Vizeacoumar, F.S. (2021). Identification of Synthetic Lethal Interactions Using High-Throughput, Arrayed CRISPR/Cas9-Based Platforms. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics