Skip to main content

Predicting and Simulating Mutational Effects on Protein Folding Kinetics

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

Abstract

Mutational perturbations of protein structures, i.e., phi-value analysis, are commonly employed to probe the extent of involvement of a particular residue in the rate-determining step(s) of folding. This generally involves the measurement of folding thermodynamic parameters and kinetic rate constants for the wild-type and mutant proteins. While computational approaches have been reasonably successful in understanding and predicting the effect of mutations on folding thermodynamics, it has been challenging to explore the same on kinetics due to confounding structural, energetic, and dynamic factors. Accordingly, the frequent observation of fractional phi-values (mean of ~0.3) has resisted a precise and consistent interpretation. Here, we describe how to construct, parameterize, and employ a simple one-dimensional free energy surface model that is grounded in the basic tenets of the energy landscape theory to predict and simulate the effect of mutations on folding kinetics. As a proof of principle, we simulate one-dimensional free energy profiles of 806 mutations from 24 different proteins employing just the experimental destabilization as input, reproduce the relative unfolding activation free energies with a correlation of 0.91, and show that the mean phi-value of 0.3 essentially corresponds to the extent of stabilization energy gained at the barrier top while folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein-folding - a synthesis. Proteins 21:167–195

    Article  CAS  PubMed  Google Scholar 

  2. Onuchic JN, LutheySchulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Ann Rev Phys Chem 48:545–600

    Article  CAS  Google Scholar 

  3. Socci ND, Onuchic JN, Wolynes PG (1996) Diffusive dynamics of the reaction coordinate for protein folding funnels. J Chem Phys 104:5860–5868

    Article  CAS  Google Scholar 

  4. Cho SS, Levy Y, Wolynes PG (2006) P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Proc Natl Acad Sci U S A 103:586–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muñoz V, Eaton WA (1999) A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci U S A 96:11311–11316

    Article  PubMed  PubMed Central  Google Scholar 

  6. Henry ER, Eaton WA (2004) Combinatorial modeling of protein folding kinetics: free energy profiles and rates. Chem Phys 307:163–185

    Article  CAS  Google Scholar 

  7. Doshi U, Muñoz V (2004) Kinetics of alpha-helix formation as diffusion on a one-dimensional free energy surface. Chem Phys 307:129–136

    Article  CAS  Google Scholar 

  8. Kubelka J, Henry ER, Cellmer T, Hofrichter J, Eaton WA (2008) Chemical, physical, and theoretical kinetics of an ultrafast folding protein. Proc Natl Acad Sci U S A 105:18655–18662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munshi S, Naganathan AN (2015) Imprints of function on the folding landscape: functional role for an intermediate in a conserved eukaryotic binding protein. Phys Chem Chem Phys 17:11042–11052

    Article  CAS  PubMed  Google Scholar 

  10. Sivanandan S, Naganathan AN (2013) A disorder-induced domino-like destabilization mechanism governs the folding and functional dynamics of the repeat protein IκBα. PLoS Comput Biol 9:e1003403

    Article  PubMed  PubMed Central  Google Scholar 

  11. Naganathan AN, Sanchez-Ruiz JM, Munshi S, Suresh S (2015) Are protein folding intermediates the evolutionary consequence of functional constraints? J Phys Chem B 119:1323–1333

    Article  CAS  PubMed  Google Scholar 

  12. Narayan A, Campos LA, Bhatia S, Fushman D, Naganathan AN (2017) Graded structural polymorphism in a bacterial thermosensor protein. J Am Chem Soc 139:792–802

    Article  CAS  PubMed  Google Scholar 

  13. Muñoz V (2001) What can we learn about protein folding from Ising-like models? Curr Opin Struct Biol 11:212–216

    Article  PubMed  Google Scholar 

  14. Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105

    Article  CAS  PubMed  Google Scholar 

  15. Naganathan AN (2013) Coarse-grained models of protein folding as detailed tools to connect with experiments. WIREs Comput Mol Sci 3:504–514

    Article  CAS  Google Scholar 

  16. Naganathan AN, Doshi U, Muñoz V (2007) Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments. J Am Chem Soc 129:5673–5682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Sancho D, Doshi U, Muñoz V (2009) Protein folding rates and stability: how much is there beyond size. J Am Chem Soc 131:2074–2075

    Article  PubMed  Google Scholar 

  18. De Sancho D, Muñoz V (2011) Integrated prediction of protein folding and unfolding rates from only size and structural class. Phys Chem Chem Phys 13:17030–17043

    Article  PubMed  Google Scholar 

  19. Robertson AD, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97:1251–1267

    Article  CAS  PubMed  Google Scholar 

  20. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  21. Naganathan AN, Doshi U, Fung A, Sadqi M, Muñoz V (2006) Dynamics, energetics, and structure in protein folding. Biochemistry 45:8466–8475

    Article  CAS  PubMed  Google Scholar 

  22. Doshi U, Muñoz V (2004) The principles of α-helix formation: explaining complex kinetics with nucleation-elongation theory. J Phys Chem B 108:8497–8506

    Article  CAS  Google Scholar 

  23. Zwanzig R (1995) Simple model of protein folding kinetics. Proc Natl Acad Sci U S A 92:9801–9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wako H, Saito N (1978) Statistical mechanical theory of protein conformation .2. folding pathway for protein. J Phys Soc Jpn 44:1939–1945

    Article  CAS  Google Scholar 

  25. Noel JK, Whitford PC, Sanbonmatsu KY, Onuchic JN (2010) SMOG@ctbp: simplified deployment of structure-based models in GROMACS. Nuc Acids Res 38:W657–W661

    Article  CAS  Google Scholar 

  26. Naganathan AN (2012) Predictions from an Ising-like statistical mechanical model on the dynamic and thermodynamic effects of protein surface electrostatics. J Chem Theory Comput 8:4646–4656

    Article  CAS  PubMed  Google Scholar 

  27. Kim J, Keyes T (2007) Inherent structure analysis of protein folding. J Phys Chem B 111:2647–2657

    Article  CAS  PubMed  Google Scholar 

  28. Akmal A, Muñoz V (2004) The nature of the free energy barriers to two-state folding. Proteins 57:142–152

    Article  CAS  PubMed  Google Scholar 

  29. Lapidus LJ, Steinbach PJ, Eaton WA, Szabo A, Hofrichter J (2002) Effects of chain stiffness on the dynamics of loop formation in polypeptides. Appendix: testing a 1-dimensional diffusion model for peptide dynamics. J Phys Chem B 106:11628–11640

    Article  CAS  Google Scholar 

  30. Naganathan AN, Muñoz V (2010) Insights into protein folding mechanisms from large scale analysis of mutational effects. Proc Natl Acad Sci U S A 107:8611–8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fersht AR, Matouschek A, Serrano L (1992) The folding of an enzyme .1. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224:771–782

    Article  CAS  PubMed  Google Scholar 

  32. Onuchic JN, Socci ND, LutheySchulten Z, Wolynes PG (1996) Protein folding funnels: the nature of the transition state ensemble. Fold Des 1:441–450

    Article  CAS  PubMed  Google Scholar 

  33. Naganathan AN, Orozco M (2011) The protein folding transition-state ensemble from a Gō-like model. Phys Chem Chem Phys 13:15166–15174

    Article  CAS  PubMed  Google Scholar 

  34. Muñoz V, Sadqi M, Naganathan AN, de Sancho D (2008) Exploiting the downhill folding regime via experiment. HFSP J 2:342–353

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rajasekaran N, Suresh S, Gopi S, Raman K, Naganathan AN (2017) A general mechanism for the propagation of mutational effects in proteins. Biochemistry 56:294–305

    Article  CAS  PubMed  Google Scholar 

  36. Rajasekaran N, Sekhar A, Naganathan AN (2017) A universal pattern in the percolation and dissipation of protein structural perturbations. J Phys Chem Lett 8:4779–4784

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez IE, Kiefhaber T (2003) Origin of unusual phi-values in protein folding: evidence against specific nucleation sites. J Mol Biol 334:1077–1085

    Article  CAS  PubMed  Google Scholar 

  38. De Los Rios MA, Muralidhara BK, Wildes D, Sosnick TR, Marqusee S, Wittung-Stafshede P, Plaxco KW, Ruczinski I (2006) On the precision of experimentally determined protein folding rates and phi-values. Protein Sci 15:553–563

    Article  PubMed Central  Google Scholar 

  39. Acharya S, Saha S, Ahmad B, Lapidus LJ (2015) Effects of mutations on the reconfiguration rate of α-Synuclein. J Phys Chem B 119:15443–15450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ternstrom T, Mayor U, Akke M, Oliveberg M (1999) From snapshot to movie: phi analysis of protein folding transition states taken one step further. Proc Natl Acad Sci U S A 96:14854–14859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pappenberger G, Saudan C, Becker M, Merbach AE, Kiefhaber T (2000) Denaturant-induced movement of the transition state of protein folding revealed by high-pressure stopped-flow measurements. Proc Natl Acad Sci U S A 97:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanchez IE, Kiefhaber T (2003) Hammond behavior versus ground state effects in protein folding: evidence for narrow free energy barriers and residual structure in unfolded states. J Mol Biol 327:867–884

    Article  CAS  PubMed  Google Scholar 

  43. Cho JH, Raleigh DP (2006) Denatured state effects and the origin of nonclassical phi values in protein folding. J Am Chem Soc 128:16492–16493

    Article  CAS  PubMed  Google Scholar 

  44. Klimov DK, Thirumalai D (2001) Multiple protein folding nuclei and the transition state ensemble in two-state proteins. Proteins 43:465–475

    Article  CAS  PubMed  Google Scholar 

  45. Best RB, Hummer G (2016) Microscopic interpretation of folding phi-values using the transition path ensemble. Proc Natl Acad Sci U S A 113:3263–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gopi S, Singh A, Suresh S, Paul S, Ranu S, Naganathan AN (2017) Toward a quantitative description of microscopic pathway heterogeneity in protein folding. Phys Chem Chem Phys 19:20891–20903

    Article  CAS  PubMed  Google Scholar 

  47. Raleigh DP, Plaxco KW (2005) The protein folding transition state: what are phi-values really telling us? Prot Pept Lett 12:117–122

    Article  CAS  Google Scholar 

  48. Naganathan AN, Perez-Jimenez R, Muñoz V, Sanchez-Ruiz JM (2011) Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis. Phys Chem Chem Phys 13:17064–17076

    Article  CAS  PubMed  Google Scholar 

  49. Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz JM, Muñoz V (2008) Expanding the realm of ultrafast protein folding: gpW, a midsize natural single-domain with alpha+beta topology that folds downhill. J Am Chem Soc 130:7489–7495

    Article  CAS  PubMed  Google Scholar 

  50. Li P, Oliva FY, Naganathan AN, Muñoz V (2009) Dynamics of one-state downhill protein folding. Proc Natl Acad Sci U S A 106:103–108

    Article  CAS  PubMed  Google Scholar 

  51. Naganathan AN, Muñoz V (2014) Thermodynamics of downhill folding: multi-probe analysis of PDD, a protein that folds over a marginal free energy barrier. J Phys Chem B 118:8982–8994

    Article  CAS  PubMed  Google Scholar 

  52. Yang WY, Gruebele M (2003) Folding at the speed limit. Nature 423:193–197

    Article  CAS  PubMed  Google Scholar 

  53. DeCamp SJ, Naganathan AN, Waldauer SA, Bakajin O, Lapidus LJ (2009) Direct observation of downhill folding of lambda-repressor in a microfluidic mixer. Biophys J 97:1772–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athi N. Naganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naganathan, A.N. (2022). Predicting and Simulating Mutational Effects on Protein Folding Kinetics. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics