Skip to main content

CRISPR/Cas9 Gene Editing in Mammalian Cells Using LentiCRISPRv2/LentiGuide-Puro Vectors

  • Protocol
  • First Online:
CRISPR-Cas Methods

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has revolutionized the field of genome engineering, medicine, as well as biotechnology. CRISPR/Cas9 is a form of bacterial defense mechanism that can be used for editing genomes by targeting a 20-nucleotide sequence using a guide RNA and nuclease enzyme called Cas9 enzyme that cleaves target gene. Different protocols have been provided; however, the success of CRISPR/Cas9 experiments is challenging. Here, we aim to describe the use of lentiviral vectors (lentiCRISPRv2/lentiGuide-Puro) for CRISPR/Cas9 genome editing and to provide strategies for minimizing off-targets. Troubleshooting advice will be provided based on experimental evidence. These guidelines will enable researchers and those with limited CRISPR/Cas experience to perform gene editing successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D (2018) A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat Commun 9(1):1912

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7(3):292–302

    Article  PubMed  PubMed Central  Google Scholar 

  4. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  PubMed  Google Scholar 

  5. Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  PubMed  Google Scholar 

  6. Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Quan R, Wang J (2018) Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet 27(R2):R79–R88

    Article  CAS  PubMed  Google Scholar 

  8. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B et al (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 6:23549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milone MC, O’Doherty U (2018) Clinical use of lentiviral vectors. Leukemia 32(7):1529–1541. https://doi.org/10.1038/s41375-018-0106-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  11. Sanjana N, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15(1):12–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H et al (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L et al (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402

    Article  CAS  PubMed  Google Scholar 

  17. Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J et al (2018) Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng 2(1):38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin J, Wong KC (2018) Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Bioinformatics 34(17):i656–i663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the members of the Department of Molecular Biology and Genetics, Bilkent University, and TUBITAK for funding (Project No: 117Z227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubaida Sa’id Ameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sa’id Ameen, Z., Cakiroglu, E., Senturk, S., Ibrahhim, A.U., Ozsoz, M. (2021). CRISPR/Cas9 Gene Editing in Mammalian Cells Using LentiCRISPRv2/LentiGuide-Puro Vectors. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics