Skip to main content

Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Abstract

The nematode Caenorhabditis elegans (C. elegans) is a prevailing model commonly utilized in a variety of biomedical research fields, including neuroscience. Due to its transparency and simplicity, it is becoming a choice model organism for conducting imaging and behavioral assessment crucial to understanding the intricacies of the nervous system. Here, the methods required for neuronal characterization using fluorescent proteins and behavioral tasks are described. These are simplified protocols using fluorescent microscopy and behavioral assays to examine neuronal connections and associated neurotransmitter systems involved in normal physiology and aberrant pathology of the nervous system. Here, we aim is to make available to readers some streamlined and replicable procedures using the C. elegans models as well as highlighting some of the limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 May 2023

    A correction has been published.

References

  1. Consortium CeS (1998) Genome sequence of the nematode C-elegans: a platform for investigating biology. Science 282(5396):2012–2018. https://doi.org/10.1126/science.282.5396.2012

    Article  Google Scholar 

  2. Antoshechkin I, Sternberg PW (2007) The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8(7):518–532. https://doi.org/10.1038/nrg2105

    Article  CAS  PubMed  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263(5148):802–805. https://doi.org/10.1126/science.8303295

    Article  CAS  PubMed  Google Scholar 

  4. Boulin T, Pocock R, Hobert O (2006) A novel Eph receptor-interacting IgSF protein provides C. elegans motoneurons with midline guidepost function. Curr Biol 16(19):1871–1883. https://doi.org/10.1016/j.cub.2006.08.056

    Article  CAS  PubMed  Google Scholar 

  5. Feinberg EH, VanHoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmannl CI (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353–363. https://doi.org/10.1016/j.neuron.2007.11.030

    Article  CAS  PubMed  Google Scholar 

  6. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M (2010) Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genet 6(8):e1001084. https://doi.org/10.1371/journal.pgen.1001084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gubert P, Puntel B, Lehmen T, Fessel JP, Cheng P, Bornhorst J, Trindade LS, Avila DS, Aschner M, Soares FAA (2018) Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation. Neurotoxicology 67:65–72. https://doi.org/10.1016/j.neuro.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  8. DiLoreto EM, Chute CD, Bryce S, Srinivasan J (2019) Novel technological advances in functional connectomics in C. elegans. J Dev Biol 7(2). https://doi.org/10.3390/jdb7020008

  9. Marsh EK, May RC (2012) Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 78(7):2075–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson TE (2003) Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp Gerontol 38(11–12):1329–1332

    CAS  PubMed  Google Scholar 

  11. Gottschling D-C, Döring F (2019) Is C. elegans a suitable model for nutritional science? Genes Nutr 14(1):1–4

    PubMed  PubMed Central  Google Scholar 

  12. Tissenbaum HA (2015) Using C. elegans for aging research. Invertebr Reprod Dev 59(sup1):59–63

    PubMed  Google Scholar 

  13. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Barclay JW, Burgoyne RD, Morgan A (2015) Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem Cent J 9(1):65

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279

    PubMed  PubMed Central  Google Scholar 

  16. Hobert O (2013) The neuronal genome of Caenorhabditis elegans. WormBook:1–106. https://doi.org/10.1895/wormbook.1.161.1

  17. Loer CMR, Rand JB (2016) The evidence for classical neurotransmitters in C. elegans neurons (updated online review/database in WormAtlas 2.0; original in 2010). WormAtlas

    Google Scholar 

  18. Rand JB (2007) Acetylcholine. WormBook:1–21. https://doi.org/10.1895/wormbook.1.131.1

  19. Chase DL, Koelle MR (2007) Biogenic amine neurotransmitters in C. elegans. WormBook:1–15. https://doi.org/10.1895/wormbook.1.132.1

  20. Vidal-Gadea AG, Davis S, Becker L, Pierce-Shimomura JT (2012) Coordination of behavioral hierarchies during environmental transitions in Caenorhabditis elegans. Worm 1(1):5–11. https://doi.org/10.4161/worm.19148

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tang B, Tong P, Xue KS, Williams PL, Wang JS, Tang L (2019) High-throughput assessment of toxic effects of metal mixtures of cadmium(cd), lead(Pb), and manganese(Mn) in nematode Caenorhabditis elegans. Chemosphere 234:232–241. https://doi.org/10.1016/j.chemosphere.2019.05.271

    Article  CAS  PubMed  Google Scholar 

  22. Baesler J, Kopp JF, Pohl G, Aschner M, Haase H, Schwerdtle T, Bornhorst J (2019) Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans. J Trace Elem Med Biol 55:44–49. https://doi.org/10.1016/j.jtemb.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xing X, Guo Y, Wang D (2009) Using the larvae nematode Caenorhabditis elegans to evaluate neurobehavioral toxicity to metallic salts. Ecotoxicol Environ Saf 72(7):1819–1823. https://doi.org/10.1016/j.ecoenv.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  24. Melo-Thomas L, Engelhardt KA, Thomas U, Hoehl D, Thomas S, Wohr M, Werner B, Bremmer F, Schwarting RKW (2017) A wireless, bidirectional Interface for in vivo recording and stimulation of neural activity in freely behaving rats. J Vis Exp 129. https://doi.org/10.3791/56299

  25. Mann T, Kurth J, Hawlitschka A, Stenzel J, Lindner T, Polei S, Hohn A, Krause BJ, Wree A (2018) [(18)F]fallypride-PET/CT analysis of the dopamine D(2)/D(3) receptor in the hemiparkinsonian rat brain following intrastriatal botulinum neurotoxin a injection. Molecules 23(3). https://doi.org/10.3390/molecules23030587

  26. Sands B, Burnaevskiy N, Yun SR, Crane MM, Kaeberlein M, Mendenhall A (2018) A toolkit for DNA assembly, genome engineering and multicolor imaging for C. elegans. Transl Med Aging 2:1–10. https://doi.org/10.1016/j.tma.2018.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  27. Green RA, Audhya A, Pozniakovsky A, Dammermann A, Pemble H, Monen J, Portier N, Hyman A, Desai A, Oegema K (2008) Expression and imaging of fluorescent proteins in the C-elegans gonad and early embryo. Method Cell Biol 85:179. https://doi.org/10.1016/S0091-679x(08)85009-1

    Article  CAS  Google Scholar 

  28. Heppert JK, Dickinson D, Pani AM, Higgins CD, Goldstein B (2016) Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system. Mol Biol Cell 27. <Go to ISI>://WOS:000396046900067

    Google Scholar 

  29. Molino JVD, de Carvalho JCM, Mayfield S (2018) Evaluation of secretion reporters to microalgae biotechnology: blue to red fluorescent proteins. Algal Res 31:252–261. https://doi.org/10.1016/j.algal.2018.02.018

    Article  Google Scholar 

  30. Kobayashi J, Shidara H, Morisawa Y, Kawakami M, Tanahashi Y, Hotta K, Oka K (2013) A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed. Neurosci Lett 548:261–264. https://doi.org/10.1016/j.neulet.2013.05.053

    Article  CAS  PubMed  Google Scholar 

  31. Flames N, Hobert O (2009) Gene regulatory logic of dopamine neuron differentiation. Nature 458(7240):885–889. https://doi.org/10.1038/nature07929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nass R, Hall DH, Miller DM 3rd, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(5):3264–3269. https://doi.org/10.1073/pnas.042497999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  34. Harrington AJ, Yacoubian TA, Slone SR, Caldwell KA, Caldwell GA (2012) Functional analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian models of Parkinson’s disease. J Neurosci 32(6):2142–2153

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED, Hobert O (2013) Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155(3):659–673. https://doi.org/10.1016/j.cell.2013.09.052

    Article  CAS  PubMed  Google Scholar 

  36. Lieke T, Steinberg CE, Ju J, Saul N (2015) Natural marine and synthetic xenobiotics get on nematode’s nerves: neuro-stimulating and neurotoxic findings in Caenorhabditis elegans. Mar Drugs 13(5):2785–2812. https://doi.org/10.3390/md13052785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soares FA, Fagundez DA, Avila DS (2017) Neurodegeneration induced by metals in Caenorhabditis elegans. Adv Neurobiol 18:355–383. https://doi.org/10.1007/978-3-319-60189-2_18

    Article  PubMed  Google Scholar 

  38. Jacques MT, Bornhorst J, Soares MV, Schwerdtle T, Garcia S, Avila DS (2019) Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only. Environ Pollut 252(Pt B):1854–1862. https://doi.org/10.1016/j.envpol.2019.06.099

    Article  CAS  PubMed  Google Scholar 

  39. Zhang RQ, Hong Y, Xiao JS (2013) Separation and determination of pyrrolidinium ionic liquid cations by ion chromatography with direct conductivity detection. Chin Chem Lett 24(6):503–505

    CAS  Google Scholar 

  40. Rohn I, Raschke S, Aschner M, Tuck S, Kuehnelt D, Kipp A, Schwerdtle T, Bornhorst J (2019) Treatment of Caenorhabditis elegans with small selenium species enhances antioxidant defense systems. Mol Nutr Food Res 63(9). https://doi.org/10.1002/mnfr.201801304

  41. Gubert P, Puntel B, Lehmen T, Bornhorst J, Avila DS, Aschner M, Soares FAA (2016) Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans. Life Sci 151:218–223. https://doi.org/10.1016/j.lfs.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  42. Kim W, Underwood RS, Greenwald I, Shaye DD (2018) OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics 210(2):445–461

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Silverman GA, Luke CJ, Bhatia SR, Long OS, Vetica AC, Perlmutter DH, Pak SC (2009) Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res 65(1):10

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Metaxakis A, Petratou D, Tavernarakis N (2018) Multimodal sensory processing in Caenorhabditis elegans. Open Biol 8(6):180049

    PubMed  PubMed Central  Google Scholar 

  46. Mujika A, Leškovský P, Álvarez R, Otaduy MA, Epelde G (2017) Modeling behavioral experiment interaction and environmental stimuli for a synthetic C. elegans. Front Neuroinform 11:71

    PubMed  PubMed Central  Google Scholar 

  47. Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM (2017) Behavioral phenotyping and pathological indicators of Parkinson's disease in C. elegans models. Frontiers in genetics 8:77

    Google Scholar 

  48. Rotroff DM, Joubert BR, Marvel SW, Håberg SE, Wu MC, Nilsen RM, Ueland PM, Nystad W, London SJ, Motsinger-Reif A (2016) Maternal smoking impacts key biological pathways in newborns through epigenetic modification in utero. BMC Genomics 17(1):976

    PubMed  PubMed Central  Google Scholar 

  49. Raley-Susman KM, Chou E, Lemoine H (2018) Use of the model organism Caenorhabditis elegans to elucidate neurotoxic and behavioral effects of commercial fungicides. Neurotoxins 37

    Google Scholar 

  50. Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M (2013) Metal-induced neurodegeneration in C. elegans. Front Aging Neurosc 5:18

    Google Scholar 

  51. Ijomone OM, Miah MR, Peres TV, Nwoha PU, Aschner M (2016) Null allele mutants of trt-1, the catalytic subunit of telomerase in Caenorhabditis elegans, are less sensitive to Mn-induced toxicity and DAergic degeneration. Neurotoxicology 57:54–60. https://doi.org/10.1016/j.neuro.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  52. Hart AC (2006) Behavior (July 3, 2006), WormBook, ed. the C. elegans research community, WormBook. https://doi.org/10.1895/wormbook.1.87.1

  53. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631

    CAS  PubMed  Google Scholar 

  54. Aschner M, Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S (2013) Metal-induced neurodegeneration in C. elegans. Frontiers in aging neuroscience 5:18

    Google Scholar 

  55. Kim H, Calatayud C, Guha S, Fernández-Carasa I, Berkowitz L, Carballo-Carbajal I, Ezquerra M, Fernández-Santiago R, Kapahi P, Raya Á (2018) The small GTPase RAC1/CED-10 is essential in maintaining dopaminergic neuron function and survival against α-Synuclein-induced toxicity. Mol Neurobiol 55(9):7533–7552

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Engleman EA, Katner SN, Neal-Beliveau BS (2016) Caenorhabditis elegans as a model to study the molecular and genetic mechanisms of drug addiction. In: Progress in molecular biology and translational science, vol 137. Elsevier, pp 229–252

    Google Scholar 

  57. Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438(7065):179–184

    CAS  PubMed  Google Scholar 

  58. Lee J, Jee C, McIntire SL (2009) Ethanol preference in C. elegans. Genes Brain Behav 8(6):578–585

    CAS  PubMed  Google Scholar 

  59. Hukema RK, Rademakers S, Jansen G (2008) Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learn Mem 15(11):829–836

    PubMed  Google Scholar 

  60. Saeki S, Yamamoto M, Iino Y (2001) Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 204(10):1757–1764

    CAS  PubMed  Google Scholar 

  61. Oda S, Tomioka M, Iino Y (2011) Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 106(1):301–308

    CAS  PubMed  Google Scholar 

  62. Zhou X, Bessereau J-L (2019) Molecular architecture of genetically-tractable GABA synapses in C. elegans. Front Mol Neurosci 12:304

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jorgensen EM (2005) GABA (August 31, 2005), WormBook, ed. The C. elegans research community. WormBook. https://doi.org/10.1895/wormbook.1.14.1

  64. Gjorgjieva J, Biron D, Haspel G (2014) Neurobiology of Caenorhabditis elegans locomotion: where do we stand? Bioscience 64(6):476–486

    PubMed  PubMed Central  Google Scholar 

  65. Trojanowski NF, Raizen DM, Fang-Yen C (2016) Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Sci Rep 6:22940

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Raizen D, Song B-M, Trojanowski N, You Y-J (2018) Methods for measuring pharyngeal behaviors. In: WormBook: the online review of C. elegans biology [internet]. WormBook

    Google Scholar 

  67. Kompoliti K, Verhagen L (2010) Encyclopedia of movement disorders, vol 1. Academic Press

    Google Scholar 

  68. Shi Y, Toga AW (2017) Connectome imaging for mapping human brain pathways. Mol Psychiatry 22(9):1230

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Azulay A, Itskovits E, Zaslaver A (2016) The C. elegans connectome consists of homogenous circuits with defined functional roles. PLoS Comput Biol 12(9):e1005021

    PubMed  PubMed Central  Google Scholar 

  70. Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KC, Tang LT-H, Bayer EA, Duerr JS (2019) Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571(7763):63–71

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lim DH, LeDue J (2017) What is optogenetics and how can we use it to discover more about the brain? Front Young Minds 5

    Google Scholar 

  72. Fang-Yen C, Alkema MJ (1677) Samuel AD (2015) illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc B 370:20140212

    Google Scholar 

  73. Guru A, Post RJ, Ho Y-Y, Warden MR (2015) Making sense of optogenetics. Int J Neuropsychopharmacol 18(11):pyv079

    PubMed  PubMed Central  Google Scholar 

  74. Schild LC, Glauser DA (2015) Dual color neural activation and behavior control with chrimson and CoChR in Caenorhabditis elegans. Genetics 200(4):1029–1034

    PubMed  PubMed Central  Google Scholar 

  75. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105(6):235–250

    CAS  PubMed  Google Scholar 

  76. Yu AJ, McDiarmid TA, Ardiel EL, Rankin CH (2019) High-throughput analysis of behavior under the control of Optogenetics in Caenorhabditis elegans. Curr Protoc Neurosci 86(1):e57

    PubMed  Google Scholar 

  77. Rost BR, Schneider-Warme F, Schmitz D, Hegemann P (2017) Optogenetic tools for subcellular applications in neuroscience. Neuron 96(3):572–603

    CAS  PubMed  Google Scholar 

  78. Yu J, Chen K, Lucero RV, Ambrosi CM, Entcheva E (2015) Cardiac optogenetics: enhancement by all-trans-retinal. Sci Rep 5:16542

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pokala N, Glater EE (2018) Using optogenetics to understand neuronal mechanisms underlying behavior in C. elegans. J Undergrad Neurosci Educ 16(2):A152

    PubMed  PubMed Central  Google Scholar 

  80. Martinez-Finley EJ, Avila DS, Chakraborty S, Aschner M (2011) Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics 3(3):271–279. https://doi.org/10.1039/c0mt00064g

    Article  CAS  PubMed  Google Scholar 

  81. Qu M, Kong Y, Yuana Y, Wang D (2019) Neuronal damage induced by nanopolystyrene particles in nematode Caenorhabditis elegans. Environ Sci Nano 6:2591–2601. https://doi.org/10.1039/C9EN00473D

    Article  CAS  Google Scholar 

  82. Schetinger MRC, Peres TV, Arantes LP, Carvalho F, Dressler V, Heidrich G, Bowman AB, Aschner M (2019) Combined exposure to methylmercury and manganese during L1 larval stage causes motor dysfunction, cholinergic and monoaminergic up-regulation and oxidative stress in L4 Caenorhabditis elegans. Toxicology 411:154–162. https://doi.org/10.1016/j.tox.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  83. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314(1165):1–340. https://doi.org/10.1098/rstb.1986.0056

    Article  CAS  Google Scholar 

  84. Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, Thomson JN, Albertson DG, Hall DH, Emmons SW (2012) The connectome of a decision-making neural network. Science 337(6093):437–444. https://doi.org/10.1126/science.1221762

    Article  CAS  PubMed  Google Scholar 

  85. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk HJ, Hochbaum DR, Goodwin D, Pnevmatikakis E, Pak N, Kawashima T, Yang CT, Rhoades JL, Shemesh O, Asano S, Yoon YG, Freifeld L, Saulnier JL, Riegler C, Engert F, Hughes T, Drobizhev M, Szabo B, Ahrens MB, Flavell SW, Sabatini BL, Boyden ES (2018) A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat Chem Biol 14(4):352–360. https://doi.org/10.1038/s41589-018-0004-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chaudhuri J, Parihar M, Pires-daSilva A (2011) An introduction to worm lab: from culturing worms to mutagenesis. J Vis Exp 47:e2293

    Google Scholar 

  88. Rivard L, Srinivasan J, Stone A, Ochoa S, Sternberg PW, Loer CM (2010) A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. BMC Neurosci 11(1):22

    PubMed  PubMed Central  Google Scholar 

  89. Swierczek NA, Giles AC, Rankin CH, Kerr RA (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8(7):592

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cooper JF, Dues DJ, Spielbauer KK, Machiela E, Senchuk MM, Van Raamsdonk JM (2015) Delaying aging is neuroprotective in Parkinson’s disease: a genetic analysis in C. elegans models. NPJ Parkinson’s Dis 1(1):1–12

    Google Scholar 

  91. Matsuura T, Urushihata T (2015) Chronic nicotine exposure augments gustatory plasticity in Caenorhabditis elegans: involvement of dopamine signaling. Biosci Biotechnol Biochem 79(3):462–469

    CAS  PubMed  Google Scholar 

  92. Urushihata T, Wakabayashi T, Osato S, Yamashita T, Matsuura T (2016) Short-term nicotine exposure induces long-lasting modulation of gustatory plasticity in Caenorhabditis elegans. Biochem Biophys Rep 8:41–47

    PubMed  PubMed Central  Google Scholar 

  93. Urushihata T, Takuwa H, Higuchi Y, Sakata K, Wakabayashi T, Nishino A, Matsuura T (2016) Inhibitory effects of caffeine on gustatory plasticity in the nematode Caenorhabditis elegans. Biosci Biotechnol Biochem 80(10):1990–1994

    CAS  PubMed  Google Scholar 

  94. Ijomone OM, Miah MR, Akingbade GT, Bucinca H, Aschner M (2020) Nickel-induced developmental neurotoxicity in C. elegans includes cholinergic, dopaminergic and GABAergic degeneration, altered behaviour, and increased SKN-1 activity. Neurotox Res 37:1010–1028. https://doi.org/10.1007/s12640-020-00175-3

    Article  CAS  Google Scholar 

  95. Bhattacharya A, Aghayeva U, Berghoff EG, Hobert O (2019) Plasticity of the electrical connectome of C. elegans. Cell 176(5):1174–1189. e1116. https://doi.org/10.1016/j.cell.2018.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KCQ, Tang LT, Bayer EA, Duerr JS, Bulow HE, Hobert O, Hall DH, Emmons SW (2019) Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571(7763):63–71. https://doi.org/10.1038/s41586-019-1352-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

OMI acknowledges the 2019 Young IBRO Regions Connecting Awards. MA is supported by National Institute of Health (NIH), USA grants, NIEHS R01 10563, NIEHS R01 07331, and NIEHS R01 020852. We acknowledge Tao Ke of the Albert Einstein College of Medicine for images of C. elegans dopaminergic neurodegeneration under MeHg exposure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ijomone, O.M. et al. (2021). Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics