Skip to main content

Amino-Cupric-Silver (A-Cu-Ag) Staining to Detect Neuronal Degeneration in the Mouse Brain: The de Olmos Technique

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

  • 1084 Accesses

Abstract

Silver staining procedures have classically been used to study the structure of the nervous system. However, reduced silver staining methods, using substances that reduce silver ions against the natural reducing properties of the tissue, can also successfully reveal degenerative changes in the nervous system. It is not known how silver binds these degenerating elements. During degeneration, silver ions may form complexes with exposed amino acid chains in denatured proteins that are then seen as black-stained elements over an unstained background (of non-degenerating elements).

The reduced Amino-Cupric-Silver method developed by de Olmos, where cupric ions are added as an external reducer, provides the greatest contrast between the degenerating and non-degenerating neuronal elements when compared with other reduced silver staining protocols. This method is unique to study degenerative morphological changes and, when combined with other staining procedures, to identify which specific neuronal population is degenerating.

After a trauma, neurons undergo several physical changes that can be visualized with different markers, such as FluoroJade, caspases, or Hematoxylin and Eosin stains. Some neurons can overcome this damage and are restored, while others undergo irreversible changes and die. The Amino-Cupric-Silver method can reveal early irreversible neuronal damage before cell death. After these irreversible changes the neurons cannot regenerate, so detecting these degenerative changes will improve the understanding of pathological changes following certain injuries of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Switzer RC (2000) Application of silver degeneration stains for neurotoxicity testing. Toxicol Pathol 28(1):70–83

    Article  CAS  PubMed  Google Scholar 

  2. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantianigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  3. Beltramino CA, de Olmos JS, Gallyas F et al (1993) Silver staining as a tool for neurotoxic assessment. NIDA Res Monogr 26:136–101; discussion 126–32

    Google Scholar 

  4. Bielschowsky M (1904) Silber impregnation der neurofibrillen. J Psychol Neurol 3:169–188

    Google Scholar 

  5. Nauta W, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system (1) technic (2) chemical notes. Stain Technol 26:5–11

    Article  CAS  PubMed  Google Scholar 

  6. de Olmos JS (1969) A cupric-silver method for impregnation of terminal axon degeneration and its further use in staining granular argyrophilic neurons. Brain Behav Evol 2:213–237

    Article  Google Scholar 

  7. de Olmos JD, Beltramino CA, de Olmos-de Lorenzo S (1994) Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratol 16:545–561

    Article  PubMed  Google Scholar 

  8. Eiland MM, Ramanathan L, Gulyani S et al (2002) Increases in amino-cupric-silver staining of the supraoptic nucleus after sleep deprivation. Brain Res 945(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breslow E (1973) Metal-protein complexes. In: Eichhorn GL (ed) Inorganic biochemistry. Elsevier, Amsterdam, The Netherlands, pp 227–249

    Google Scholar 

  10. Freeman HC (1973) Metal complexes of amino acid and peptides. In: Eichhorn GL (ed) Inorganic biochemistry. Elsevier, Amsterdam, The Netherlands, pp 121–166

    Google Scholar 

  11. Leigh GJ (1990) Nomenclature of inorganic chemistry (recommendations 1990)-the red book. Blackwell Science, London

    Google Scholar 

  12. Gallyas F (1982) Physico-chemical mechanism of the argyrophil III reaction. Histochemistry 74(3):409–421

    Article  CAS  PubMed  Google Scholar 

  13. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39(5):1066–1080

    Article  CAS  PubMed  Google Scholar 

  14. Ramón y Cajal S, de Castro F (1933) Elemento de técnica micrográfica del sistema nervioso. Tipografía Artística, Madrid

    Google Scholar 

  15. de Olmos JS, Ingram WR (1971) An improved cupric-silver method for impregnation of axonal and terminal degeneration. Brain Res 33:523–529

    Article  Google Scholar 

  16. Tenkova TI, Goldberg MP (2007) A modified silver technique (de Olmos stain) for assessment of neuronal and axonal degeneration. Methods Mol Biol 399:31–39

    Article  CAS  PubMed  Google Scholar 

  17. de Olmos S, Bender C, de Olmos JS, Lorenzo A (2009) Neurodegeneration and prolonged immediate early gene expression throughout cortical areas of the rat brain following acute administration of dizocilpine. Neuroscience 164(3):1347–1359

    Article  PubMed  Google Scholar 

  18. Carmena A, Granado N, Ares-Santos S, Alberquilla S, Tizabi Y, Moratalla R (2015) Methamphetamine-induced toxicity in indusium griseum of mice is associated with astro- and microgliosis. Neurotox Res 27(3):209–216

    Article  CAS  PubMed  Google Scholar 

  19. Mendieta L, Granado N, Aguilera J, Tizabi Y, Moratalla R (2016) Fragment C domain of tetanus toxin mitigates methamphetamine neurotoxicity and its motor consequences in mice. Int J Neuropsychopharmacol 19(8):pyw021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Granado N, Ares-Santos S, Tizabi Y, Moratalla R (2018) Striatal reinnervation process after acute methamphetamine-induced dopaminergic degeneration in mice. Neurotox Res 34(3):627–639

    Article  CAS  PubMed  Google Scholar 

  21. Granado N, Ares-Santos S, O’Shea E, Vicario-Abejón C, Colado MI, Moratalla R (2010) Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration : early loss of TH in striosomes after methamphetamine. Neurotox Res 18(1):48–58

    Article  PubMed  Google Scholar 

  22. Fujikawa DG, Zhao S, Ke X, Shinmei SS, Allen SG (2010) Mild as well as severe insults produce necrotic, not apoptotic, cells: evidence from 60-min seizures. Neurosci Lett 469:333–337

    Article  CAS  PubMed  Google Scholar 

  23. Ares-Santos S, Granado N, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2012) Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol Dis 45(2):810–820

    Article  CAS  PubMed  Google Scholar 

  24. Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107(4):1102–1112

    CAS  PubMed  Google Scholar 

  25. Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42(3):391–403

    Article  CAS  PubMed  Google Scholar 

  26. Zamanian JL, Xu L, Foo LC et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Callaghan JP, Kelly KA, VanGilder RL et al (2014) Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity. PLoS One 9(7):e102003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bender C, de Olmos S, Bueno A, de Olmos J, Lorenzo A (2010) Comparative analyses of the neurodegeneration induced by the non-competitive NMDA-receptor-antagonist drug MK801 in mice and rats. Neurotoxicol Teratol 32(5):542–550

    Article  CAS  PubMed  Google Scholar 

  29. Sigwald EL, Bignante EA, de Olmos S, Lorenzo A (2019) Fear-context association during memory retrieval requires input from granular to dysgranular retrosplenial cortex. Neurobiol Learn Mem 163:107036

    Article  PubMed  Google Scholar 

  30. Fernández MS, de Olmos S, Nizhnikov ME, Pautassi RM (2019) Restraint stress exacerbates cell degeneration induced by acute binge ethanol in the adolescent, but not in the adult or middle-aged, brain. Behav Brain Res 364:317–327

    Article  PubMed  Google Scholar 

  31. Rivarola ME, de Olmos S, Albrieu-Llinás G et al (2018) Neuronal degeneration in mice induced by an epidemic strain of Saint Louis encephalitis virus isolated in Argentina. Front Microbiol 7:9,1181

    Google Scholar 

  32. Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66(6):603–613

    Article  CAS  PubMed  Google Scholar 

  33. Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R (2012) L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 48(3):271–281

    Article  CAS  PubMed  Google Scholar 

  34. Albrecht M (1954) Mounting frozen sections with gelatin. Stain Technol 29:89–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This protocol was set up in the laboratory of Dr. Rosario Moratalla at Cajal Institute (CSIC) from the protocol described by de Olmos and colleagues in 1994 [14]. We thank Manuel Marquez-Rivera for his help with the revision of the manuscript. Preparation of this manuscript was supported by grants from the Spanish Ministries of Innovation, Science and Universities PID2019-111693RB-I00 and PCIN-2015-098 and Health, Social Services and Equality (PNSD 2016/033 and CIBERNED CB06/05/0055) and UE (H2020-SC1-BHC-2018-2020, grant agreement n° 848002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Moratalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moratalla, R., Sanz-Magro, A., Granado, N. (2021). Amino-Cupric-Silver (A-Cu-Ag) Staining to Detect Neuronal Degeneration in the Mouse Brain: The de Olmos Technique. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics