Skip to main content

Bimolecular Fluorescence Complementation (BiFC) and Multiplexed Imaging of Protein–Protein Interactions in Human Living Cells

  • Protocol
  • First Online:
Multiplexed Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2350))

Abstract

Deciphering protein–protein interactions (PPIs) in vivo is crucial to understand protein function. Bimolecular fluorescence complementation (BiFC) makes applicable the analysis of PPIs in many different native contexts, including human live cells. It relies on the property of monomeric fluorescent proteins to be reconstituted from two separate subfragments upon spatial proximity. Candidate partners fused to such complementary subfragments can form a fluorescent protein complex upon interaction, allowing visualization of weak and transient PPIs. It can also be applied for investigation of distinct PPIs at the same time using a multicolor setup. In this chapter, we provide a detailed protocol for analyzing PPIs by doing BiFC in cultured cells. Proof-of-principle experiments rely on the complementation property between the N-terminal fragment of mVenus (designated VN173) and the C-terminal fragment of mCerulean (designated CC155) and the partnership between HOXA7 and PBX1 proteins. This protocol is compatible with any other fluorescent complementation pair fragments and any type of candidate interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456

    Article  CAS  Google Scholar 

  2. Hu C-D, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  Google Scholar 

  3. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286

    Article  Google Scholar 

  4. Rizzo MA, Springer GH, Granada B et al (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  Google Scholar 

  5. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  Google Scholar 

  6. Bhat RA, Lahaye T, Panstruga R (2006) The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods 2:12

    Article  Google Scholar 

  7. Hu C-D, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  CAS  Google Scholar 

  8. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006:re2

    PubMed  Google Scholar 

  9. Hu C-D, Grinberg AV, Kerppola TK (2006) Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis. Curr Protoc Cell Biol Chapter 21:Unit 21.3

    PubMed  Google Scholar 

  10. Magli MC, Largman C, Lawrence HJ (1997) Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 173:168–177

    Article  CAS  Google Scholar 

  11. Moens CB, Selleri L (2006) Hox cofactors in vertebrate development. Dev Biol 291:193–206

    Article  CAS  Google Scholar 

  12. Passner JM, Ryoo HD, Shen L et al (1999) Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex. Nature 397:714–719

    Article  CAS  Google Scholar 

  13. Dard A, Reboulet J, Jia Y et al (2018) Human HOX proteins use diverse and context-dependent motifs to interact with TALE class cofactors. Cell Rep 22:3058–3071

    Article  CAS  Google Scholar 

  14. LaRonde-LeBlanc NA, Wolberger C (2003) Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 17:2060–2072

    Article  CAS  Google Scholar 

  15. Shyu YJ, Liu H, Deng X et al (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 40:61–66

    Article  CAS  Google Scholar 

  16. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  18. Blogger G. When is a monomer not a monomer? The top three ways your favorite fluorescent protein oligomerizes in cells. https://blog.addgene.org/when-is-a-monomer-not-a-monomer-the-top-three-ways-your-favorite-fluorescent-protein-oligomerizes-in-cells

  19. Zacharias DA, Violin JD, Newton AC et al (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  Google Scholar 

  20. Kudla J, Bock R (2016) Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28:1002–1008

    Article  CAS  Google Scholar 

  21. Horstman A, Tonaco IAN, Boutilier K et al (2014) A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. Int J Mol Sci 15:9628–9643

    Article  CAS  Google Scholar 

  22. Xia J, Kong L, Zhou L-J et al (2018) Genome-wide bimolecular fluorescence complementation-based proteomic analysis of toxoplasma gondii ROP18’s human Interactome shows its key role in regulation of cell immunity and apoptosis. Front Immunol 9:61

    Article  Google Scholar 

  23. Yue L, Li L, Li D et al (2017) High-throughput screening for Survivin and Borealin interaction inhibitors in hepatocellular carcinoma. Biochem Biophys Res Commun 484:642–647

    Article  CAS  Google Scholar 

  24. Lepur A, Kovačević L, Belužić R et al (2016) Combining unique multiplex gateway cloning and bimolecular fluorescence complementation (BiFC) for high-throughput screening of protein–protein interactions. J Biomol Screen 21:1100–1111

    Article  CAS  Google Scholar 

  25. Vidi P-A, Przybyla JA, Hu C-D et al (2010) Visualization of G protein-coupled receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC). Curr Protoc Neurosci Chapter 5:Unit-5.29

    PubMed  Google Scholar 

  26. PB helping cells and sections to stick: cleaning, sterilising and coating slides and coverslips | Agar Scientific. http://www.agarscientific.net/helping-cells-and-sections-to-stick-cleaning-sterilising-and-coating-slides-and-coverslips/

  27. Ando K, Parsons MJ, Shah RB et al (2017) NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol 216:1795–1810

    Article  CAS  Google Scholar 

  28. Szymczak AL, Vignali DAA (2005) Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther 5:627–638

    Article  CAS  Google Scholar 

  29. Liu Z, Chen O, Wall JBJ et al (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of S. Merabet is supported by Association pour la Recherche sur le Cancer (ARC, PJA20141202007); Fondation pour la Recherche Médicale (FRM, DEQ. 20170336732); Ligue Nationale Contre le Cancer, Centre National de Recherche Scientifique (CNRS); CEFIPRA (5503-2); CNRS; and Ecole Normale Supérieure (ENS) de Lyon. We further thank the China Scholarship Council (CSC, File No. 201708070003) for the doctoral grant to Y. Jia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Merabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jia, Y., Bleicher, F., Reboulet, J., Merabet, S. (2021). Bimolecular Fluorescence Complementation (BiFC) and Multiplexed Imaging of Protein–Protein Interactions in Human Living Cells. In: Zamir, E. (eds) Multiplexed Imaging. Methods in Molecular Biology, vol 2350. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1593-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1593-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1592-8

  • Online ISBN: 978-1-0716-1593-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics