Skip to main content

Curating COBRA Models of Microbial Metabolism

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2349))

Abstract

Constraint-based reconstruction and analysis (COBRA) methods have been used for over 20 years to generate genome-scale models of metabolism in biological systems. The COBRA models have been utilized to gain new insights into the biochemical conversions that occur within organisms and allow their survival and proliferation. Using these models, computational biologists can conduct a variety of different analyses such as examining network structures, predicting metabolic capabilities, resolving unexplained experimental observations, generating and testing new hypotheses, assessing the nutritional requirements of a biosystem and approximating its environmental niche, identifying missing enzymatic functions in the annotated genomes, and engineering desired metabolic capabilities in model organisms. This chapter details the protocol for developing curated system-level COBRA models of metabolism in microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843

    Article  CAS  PubMed  Google Scholar 

  2. Almaas E (2007) Optimal flux patterns in cellular metabolic networks. Chaos 17(2):026107

    Article  PubMed  CAS  Google Scholar 

  3. Almaas E, Oltvai ZN, Barabasi AL (2005) The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1(7):e68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gagneur J, Jackson DB, Casari G (2003) Hierarchical analysis of dependency in metabolic networks. Bioinformatics 19(8):1027–1034

    Article  CAS  PubMed  Google Scholar 

  5. Li G, Cao H, Xu Y (2018) Structural and functional analyses of microbial metabolic networks reveal novel insights into genome-scale metabolic fluxes. Brief Bioinform 20(4):1590–1603

    Article  CAS  Google Scholar 

  6. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99(23):15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38(9):993–998

    Article  CAS  PubMed  Google Scholar 

  8. Jamshidi N, Palsson BO (2006) Systems biology of SNPs. Mol Syst Biol 2:38

    Article  PubMed Central  PubMed  Google Scholar 

  9. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho W-C, Zhang J (2016) Adaptive genetic robustness of Escherichia coli metabolic fluxes. Mol Biol Evol 33(5):1164–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7(2):130–141

    Article  CAS  PubMed  Google Scholar 

  12. Navid A, Almaas E (2009) Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001. Mol BioSyst 5(4):368–375

    Article  CAS  PubMed  Google Scholar 

  13. Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37(12):1372–1375

    Article  CAS  PubMed  Google Scholar 

  14. Pal C, Papp B, Lercher MJ (2005) Horizontal gene transfer depends on gene content of the host. Bioinformatics 21(Suppl 2):222–223

    Article  Google Scholar 

  15. Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440(7084):667–670

    Article  CAS  PubMed  Google Scholar 

  16. Großkopf T, Consuegra J, Gaffé J, Willison JC, Lenski RE, Soyer OS et al (2016) Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment. BMC Evol Biol 16(1):163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pharkya P, Burgard AP, Maranas CD (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 84(7):887–899

    Article  CAS  PubMed  Google Scholar 

  18. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657

    Article  CAS  PubMed  Google Scholar 

  19. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD et al (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648

    Article  CAS  PubMed  Google Scholar 

  21. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshikawa K, Toya Y, Shimizu H (2017) Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Bioprocess Biosyst Eng 40(5):791–796

    Article  CAS  PubMed  Google Scholar 

  23. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012) Multidimensional optimality of microbial metabolism. Science 336(6081):601–604

    Article  CAS  PubMed  Google Scholar 

  25. Navid A, Jiao Y, Wong SE, Pett-Ridge J (2019) System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. BMC Bioinformatics 20(1):233

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S (2016) A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS Pathogens 12(10):e1005939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  28. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12(10):994–998

    Article  CAS  Google Scholar 

  29. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gottstein W, Olivier BG, Bruggeman FJ, Teusink B (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. J R Soc Interface 13(124):20160627

    Article  PubMed  PubMed Central  Google Scholar 

  31. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L et al (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39(Database issue):D583–D590

    Article  CAS  PubMed  Google Scholar 

  32. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y et al (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38(Database issue):D382–D390

    Article  CAS  PubMed  Google Scholar 

  33. Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 35(Database issue):D26–D31

    Article  CAS  PubMed  Google Scholar 

  34. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S et al (2018) KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36(7):566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griesemer M, Kimbrel JA, Zhou CE, Navid A, D’haeseleer P (2018) Combining multiple functional annotation tools increases coverage of metabolic annotation. BMC Genomics 19(1):948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karlsen E, Schulz C, Almaas E (2018) Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics 19(1):467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Machado D, Andrejev S, Tramontano M, Patil KR (2018) Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res 46(15):7542–7553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982

    Article  CAS  PubMed  Google Scholar 

  40. Dias O, Rocha M, Ferreira EC, Rocha I (2015) Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res 43(8):3899–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R et al (2015) Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 17(5):877–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang H, Marcišauskas S, Sánchez BJ, Domenzain I, Hermansson D, Agren R et al (2018) RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput Biol 14(10):e1006541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Swainston N, Smallbone K, Mendes P, Kell DB, Paton NW (2011) The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinform 8(2):187–203

    Article  Google Scholar 

  45. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738

    Article  CAS  PubMed  Google Scholar 

  46. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nat Protoc 2019:1

    Google Scholar 

  48. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  CAS  PubMed  Google Scholar 

  49. Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002) BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 27(1):54–56

    Article  CAS  PubMed  Google Scholar 

  52. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37(Suppl 1):D588

    Article  CAS  PubMed  Google Scholar 

  53. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(suppl 1):D277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(Database issue):D623–D631

    CAS  PubMed  Google Scholar 

  56. Ren Q, Kang KH, Paulsen IT (2004) TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32(suppl 1):D284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ren Q, Chen K, Paulsen IT (2006) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35(suppl 1):D274

    PubMed  PubMed Central  Google Scholar 

  58. Fritzemeier CJ, Hartleb D, Szappanos B, Papp B, Lercher MJ (2017) Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal. PLoS Comput Biol 13(4):e1005494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Alberty RA (1998) Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions. Arch Biochem Biophys 358(1):25–39

    Article  CAS  PubMed  Google Scholar 

  60. Alberty RA (1998) Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Arch Biochem Biophys 353(1):116–130

    Article  CAS  PubMed  Google Scholar 

  61. Kummel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Mavrovouniotis ML (1990) Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36(10):1070–1082

    Article  CAS  PubMed  Google Scholar 

  63. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Henry CS, Jankowski MD, Broadbelt LJ, Hatzimanikatis V (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90(4):1453–1461

    Article  CAS  PubMed  Google Scholar 

  65. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92(5):1792–1805

    Article  CAS  PubMed  Google Scholar 

  66. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tanaka M, Okuno Y, Yamada T, Goto S, Uemura S, Kanehisa M (2003) Extraction of a thermodynamic property for biochemical reactions in the metabolic pathway. Genome Informatics Ser 14:370–371

    Google Scholar 

  68. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  CAS  PubMed  Google Scholar 

  69. Hucka M, Bergmann FT, Dräger A, Hoops S, Keating SM, Le Novère N et al (2018) The Systems Biology Markup Language (SBML): language specification for level 3 version 2 core. J Integr Bioinformatics 15(1):20170081

    Google Scholar 

  70. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neidhardt FC, Curtiss R III, Ingraham J, Lin E, Low K, Magasanik B et al (1996) Escherichia coli and salmonella: cellular and molecular biology. Sigma-Aldrich, Washington DC

    Google Scholar 

  72. Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297(1–2):51–60

    Article  CAS  PubMed  Google Scholar 

  73. Dumontier M, Michalickova K, Hogue C (2002) Species-specific protein sequence and fold optimizations. BMC Bioinformatics 3(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chan SHJ, Cai J, Wang L, Simons-Senftle MN, Maranas CD (2017) Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics 33(22):3603–3609

    Article  CAS  PubMed  Google Scholar 

  75. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EEK, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28(2):362–375

    Article  CAS  PubMed  Google Scholar 

  77. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325(2):308–316

    Article  CAS  PubMed  Google Scholar 

  78. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stewart BJ, Navid A, Turteltaub KW, Bench G (2010) Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry. Anal Chem 82(23):9812–9817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P et al (2020) MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol 38(3):272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897

    Article  CAS  PubMed  Google Scholar 

  83. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26(6):659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Milne CB, Kim PJ, Eddy JA, Price ND (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 4(12):1653–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu L, Agren R, Bordel S, Nielsen J (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584(12):2556–2564

    Article  CAS  PubMed  Google Scholar 

  86. Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107–120

    Article  CAS  PubMed  Google Scholar 

  87. Knorr AL, Jain R, Srivastava R (2007) Bayesian-based selection of metabolic objective functions. Bioinformatics 23(3):351–357

    Article  CAS  PubMed  Google Scholar 

  88. Holzhutter HG (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271(14):2905–2922

    Article  PubMed  CAS  Google Scholar 

  89. Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496

    Article  CAS  PubMed  Google Scholar 

  91. Krummenacker M, Paley S, Mueller L, Yan T, Karp PD (2005) Querying and computing with BioCyc databases. Bioinformatics 21(16):3454–3455

    Article  CAS  PubMed  Google Scholar 

  92. Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 48(D1):D9–D16

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the DOE OBER Genomic Science program and LLNL Laboratory Directed Research and Development funding and performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Navid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Navid, A. (2022). Curating COBRA Models of Microbial Metabolism. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 2349. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1585-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1585-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1584-3

  • Online ISBN: 978-1-0716-1585-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics