Skip to main content

In Vitro Silencing of lncRNAs Using LNA GapmeRs

  • Protocol
  • First Online:
Long Non-Coding RNAs in Cancer

Abstract

Despite substantial advancements have been achieved in the identification of long noncoding RNA (lncRNA) molecules, many challenges still remain into their functional characterization. Loss-of-function approaches are needed to study oncogenic lncRNAs, which appear more difficult to knock down by RNA interference as compared to mRNAs. In this chapter, we present a protocol based on the use of a novel class of antisense oligonucleotides, named locked nucleic acid (LNA) GapmeRs, to inhibit the oncogenic lncRNA NEAT1 in multiple myeloma cells. Overall, this approach holds many advantages, including its possible independence from delivery reagents as well as the capability to knock down lncRNAs even in hard-to-transfect suspension cells, like hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  2. Amodio N, Raimondi L, Juli G et al (2018) MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 11(1):63. https://doi.org/10.1186/s13045-018-0606-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slack FJ, Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. Cell 179(5):1033–1055. https://doi.org/10.1016/j.cell.2019.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24(3):257–277. https://doi.org/10.1016/j.molmed.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4):381–391. https://doi.org/10.1517/17425250902877680

    Article  CAS  PubMed  Google Scholar 

  7. Geary RS, Norris D, Yu R et al (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51. https://doi.org/10.1016/j.addr.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  8. Shen X, Corey DR (2018) Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 46(4):1584–1600. https://doi.org/10.1093/nar/gkx1239

    Article  CAS  PubMed  Google Scholar 

  9. Lundin KE, Hojland T, Hansen BR et al (2013) Biological activity and biotechnological aspects of locked nucleic acids. Adv Genet 82:47–107. https://doi.org/10.1016/B978-0-12-407676-1.00002-0

    Article  CAS  PubMed  Google Scholar 

  10. Hagedorn PH, Persson R, Funder ED et al (2018) Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov Today 23(1):101–114. https://doi.org/10.1016/j.drudis.2017.09.018

    Article  CAS  PubMed  Google Scholar 

  11. Amodio N, D’Aquila P, Passarino G et al (2017) Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin Ther Targets 21(1):91–101. https://doi.org/10.1080/14728222.2016.1266339

    Article  CAS  PubMed  Google Scholar 

  12. Janssen HL, Kauppinen S, Hodges MR (2013) HCV infection and miravirsen. N Engl J Med 369(9):878. https://doi.org/10.1056/NEJMc1307787

    Article  PubMed  Google Scholar 

  13. Kurreck J, Wyszko E, Gillen C et al (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30(9):1911–1918. https://doi.org/10.1093/nar/30.9.1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97(10):5633–5638. https://doi.org/10.1073/pnas.97.10.5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stein CA, Hansen JB, Lai J et al (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38(1):e3. https://doi.org/10.1093/nar/gkp841

    Article  CAS  PubMed  Google Scholar 

  16. Amodio N, Stamato MA, Juli G et al (2018) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32(9):1948–1957. https://doi.org/10.1038/s41375-018-0067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morelli E, Biamonte L, Federico C et al (2018) Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood 132(10):1050–1063. https://doi.org/10.1182/blood-2018-03-836601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ronchetti D, Todoerti K, Vinci C et al (2020) Expression pattern and biological significance of the lncRNA ST3GAL6-AS1 in multiple myeloma. Cancers (Basel) 12(4):782. https://doi.org/10.3390/cancers12040782

    Article  CAS  Google Scholar 

  19. Taiana E, Favasuli V, Ronchetti D et al (2020) Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia 34(1):234–244. https://doi.org/10.1038/s41375-019-0542-5

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Qu Z, Kim S et al (2011) Down-modulation of cancer targets using locked nucleic acid (LNA)-based antisense oligonucleotides without transfection. Gene Ther 18(4):326–333. https://doi.org/10.1038/gt.2010.133

    Article  CAS  PubMed  Google Scholar 

  21. Roux BT, Lindsay MA, Heward JA (2017) Knockdown of nuclear-located enhancer RNAs and long ncRNAs using locked nucleic acid GapmeRs. Methods Mol Biol 1468:11–18. https://doi.org/10.1007/978-1-4939-4035-6_2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants to Antonino Neri [from Associazione Italiana Ricerca sul Cancro (AIRC) (IG16722, IG24365, and the “Special Program Molecular Clinical Oncology-5 per mille” #9980, 2010/15)]; to Pierfrancesco Tassone (from AIRC, IG21588); to Nicola Amodio [from Italian Ministry of Health (GR-2016-02361523) and from AIRC (IG24449)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Neri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Taiana, E. et al. (2021). In Vitro Silencing of lncRNAs Using LNA GapmeRs. In: Navarro, A. (eds) Long Non-Coding RNAs in Cancer. Methods in Molecular Biology, vol 2348. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1581-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1581-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1580-5

  • Online ISBN: 978-1-0716-1581-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics