Skip to main content

Expanding the Biocatalysis Toolbox

  • Protocol
  • First Online:
Green Chemistry in Drug Discovery

Abstract

Research directed toward the development of biocatalytic platforms has been sparked by successful applications of enzymes for sustainable manufacturing of pharmaceutical compounds. This review describes recent progress in the development of ene-reductases, oxygenases, and enzymes for amide and amine synthesis, with a focus on academic and industrial collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41(4):1452–1461

    Article  CAS  PubMed  Google Scholar 

  2. Martinez CA, Hu S, Dumond Y, Tao J, Kelleher P, Tully L (2008) Development of a chemoenzymatic manufacturing process for pregabalin. Org Process Res Dev 12(3):392–398

    Article  CAS  Google Scholar 

  3. Hoekstra MS, Sobieray DM, Schwindt MA, Mulhern TA, Grote TM, Huckabee BK, Hendrickson VS, Franklin LC, Granger EJ, Karrick GL (1997) Chemical development of CI-1008, an enantiomerically pure anticonvulsant. Org Process Res Dev 1(1):26–38

    Article  CAS  Google Scholar 

  4. Sheldon RA (1992) Organic Synthesis—past, present, and future. Chem Ind:903–906

    Google Scholar 

  5. Dunn, P.; Hettenbach, K.; Kelleher, P.; Martinez, C. A., The development of a green, energy efficient, chemoenzymatic manufacturing process for pregabalin. In Dunn PJ, Wells AS, Williams MT (Eds) Green chemistry in the pharmaceutical industry. Wiley 2010.pp 161–177

    Chapter  Google Scholar 

  6. Balsells, J.; Hsiao, Y.; Hansen, K. B.; Xu, F.; Ikemoto, N., Synthesis of sitagliptin, the active ingredient in Januvia® and Janumet® 1. In Dunn PJ, Wells AS, Williams MT (Eds) Green chemistry in the pharmaceutical industry. Wiley 2010.

    Google Scholar 

  7. Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    Article  CAS  PubMed  Google Scholar 

  8. Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17(2):284–292

    Article  CAS  PubMed  Google Scholar 

  9. Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135(34):12480–12496

    Article  CAS  PubMed  Google Scholar 

  10. Abe I, Piel J (2010) Natural products via enzymatic reactions. Springer

    Google Scholar 

  11. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989):305–309

    Article  CAS  PubMed  Google Scholar 

  12. Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14(2):122–129

    Article  CAS  PubMed  Google Scholar 

  13. Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40(12):1412–1419

    Article  CAS  PubMed  Google Scholar 

  14. Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. ChemCatChem 1(1):42–51

    Article  Google Scholar 

  15. Koszelewski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W (2008) Formal asymmetric biocatalytic reductive amination. Angew Chem Int Ed 47(48):9337–9340

    Article  CAS  Google Scholar 

  16. Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15(2):187–193

    Article  CAS  PubMed  Google Scholar 

  17. Wolberg M, Dassen BH, Schürmann M, Jennewein S, Wubbolts MG, Schoemaker HE, Mink D (2008) Large-scale synthesis of new pyranoid building blocks based on aldolase-catalysed carbon-carbon bond formation. Adv Synth Catal 350(11-12):1751–1759

    Article  CAS  Google Scholar 

  18. Bergeron S, Chaplin DA, Edwards JH, Ellis BS, Hill CL, Holt-Tiffin K, Knight JR, Mahoney T, Osborne AP, Ruecroft G (2006) Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Process Res Dev 10(3):661–665

    Article  CAS  Google Scholar 

  19. Schmid A, Hollmann F, Park JB, Bühler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13(4):359–366

    Article  CAS  PubMed  Google Scholar 

  20. Griengl H, Schwab H, Fechter M (2000) The synthesis of chiral cyanohydrins by oxynitrilases. Trends Biotechnol 18(6):252–256

    Article  CAS  PubMed  Google Scholar 

  21. Kotik M, Archelas A, Wohlgemuth R (2012) Epoxide hydrolases and their application in organic synthesis. Curr Org Chem 16(4):451–482

    Article  CAS  Google Scholar 

  22. Davids T, Schmidt M, Böttcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17(2):215–220

    Article  CAS  PubMed  Google Scholar 

  23. Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M (2012) Engineering genes for predictable protein expression. Protein Expr Purif 83(1):37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clouthier CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41(4):1585–1605

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Mata M, Frank A, Wells E, Leipold F, Turner NJ, Hart S, Turkenburg JP, Grogan G (2013) Structure and activity of NADPH-dependent reductase Q1EQE0 from Streptomyces kanamyceticus, which catalyses the R-selective reduction of an imine substrate. ChemBioChem 14(11):1372–1379

    Article  PubMed  Google Scholar 

  26. Martinez CA, Rupashinghe S (2013) Cytochrome P450 bioreactors in the pharmaceutical industry: challenges and opportunities. Curr Top Med Chem

    Google Scholar 

  27. Danger G, Plasson R, Pascal R (2012) Pathways for the formation and evolution of peptides in prebiotic environments. Chem Soc Rev 41(16):5416–5429

    Article  CAS  PubMed  Google Scholar 

  28. Dawlaty J, Zhang X, Fischbach MA, Clardy J (2009) Dapdiamides, tripeptide antibiotics formed by unconventional amide ligases†. J Nat Prod 73(3):441–446

    Article  PubMed Central  Google Scholar 

  29. Hiller DA, Singh V, Zhong M, Strobel SA (2011) A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Nature 476(7359):236–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hollenhorst MA, Clardy J, Walsh CT (2009) The ATP-dependent amide ligases DdaG and DdaF assemble the fumaramoyl-dipeptide scaffold of the dapdiamide antibiotics. Biochemistry 48(43):10467–10472

    Article  CAS  PubMed  Google Scholar 

  31. Marahiel MA, Essen LO (2009) Chapter 13 nonribosomal peptide synthetases: mechanistic and structural aspects of essential domains. In: David AH (ed) Methods in enzymology, vol 458. Academic, pp 337–351

    Google Scholar 

  32. Goswami A, Van Lanen SG (2015) Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. Mol BioSyst 11(2):338–353

    Article  CAS  PubMed  Google Scholar 

  33. Geng M, Duan Z (2010) Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim Cosmochim Acta 74(19):5631–5640

    Article  CAS  Google Scholar 

  34. García-Junceda E, Lavandera I, Rother D, Schrittwieser JH (2015) (Chemo) enzymatic cascades—nature’s synthetic strategy transferred to the laboratory. J Mol Catal B Enzym 114:1–6

    Article  Google Scholar 

  35. Köhler V, Turner NJ (2015) Artificial concurrent catalytic processes involving enzymes. Chem Commun 51(3):450–464

    Article  Google Scholar 

  36. Coelho PS, Brustad EM, Kannan A, Arnold FH (2013) Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339(6117):307–310

    Article  CAS  PubMed  Google Scholar 

  37. Geertsema EM, Miao Y, Tepper PG, de Haan P, Zandvoort E, Poelarends GJ (2013) Biocatalytic Michael-type additions of acetaldehyde to nitroolefins with the proline-based enzyme 4-oxalocrotonate tautomerase yielding enantioenriched γ-nitroaldehydes. Chem Eur J 19(43):14407–14410

    Article  CAS  PubMed  Google Scholar 

  38. Wu F, Zhu H, Sun L, Rajendran C, Wang M, Ren X, Panjikar S, Cherkasov A, Zou H, Stöckigt J (2011) Scaffold tailoring by a newly detected pictet–Spenglerase activity of strictosidine synthase: from the common tryptoline skeleton to the rare piperazino-indole framework. J Am Chem Soc 134(3):1498–1500

    Article  Google Scholar 

  39. Kelly WL (2008) Intramolecular cyclizations of polyketide biosynthesis: mining for a “Diels–Alderase”? Org Biomol Chem 6(24):4483–4493

    Article  CAS  PubMed  Google Scholar 

  40. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, Shen BW, Players F, Stoddard BL, Popovic Z, Baker D (2012) Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat Biotechnol 30(2):190–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cooney CL (1983) Bioreactors: design and operation. Science 219(4585):728–733

    Article  CAS  PubMed  Google Scholar 

  42. Gernaey KV, Cervera-Padrell AE, Woodley JM (2012) A perspective on PSE in pharmaceutical process development and innovation. Comput Chem Eng 42:15–29

    Article  CAS  Google Scholar 

  43. Kim PY, Pollard DJ, Woodley JM (2007) Substrate supply for effective biocatalysis. Biotechnol Prog 23(1):74–82

    Article  CAS  PubMed  Google Scholar 

  44. Rao NN, Lütz S, Seelbach K, Liese A (2006) Basics of bioreaction engineering. Industrial biotransformations. Wiley-VCH, pp 115–145

    Book  Google Scholar 

  45. Andrade LH, Kroutil W, Jamison TF (2014) Continuous flow synthesis of chiral amines in organic solvents: immobilization of E. coli cells containing both ω-transaminase and PLP. Org Lett 16(23):6092–6095

    Article  CAS  PubMed  Google Scholar 

  46. Tomaszewski B, Schmid A, Buehler K (2014) Biocatalytic production of catechols using a high pressure tube-in-tube segmented flow microreactor. Org Process Res Dev 18(11):1516–1526

    Article  CAS  Google Scholar 

  47. Fink MJ, Schön M, Rudroff F, Schnürch M, Mihovilovic MD (2013) Single operation stereoselective synthesis of aerangis lactones: combining continuous flow hydrogenation and biocatalysts in a chemoenzymatic sequence. ChemCatChem 5(3):724–727

    Article  CAS  Google Scholar 

  48. Falus P, Boros Z, Kovács P, Poppe L, Nagy J (2014) Lipase-catalyzed kinetic resolution of 1-(2-hydroxycyclohexyl) indoles in batch and continuous-flow systems. J Flow Chem 4(3):125–134

    Article  Google Scholar 

  49. Sirin S, Kumar R, Martinez CA, Karmilowicz MJ, Ghosh P, Abramov YA, Martin V, Sherman W (2014) A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 54(8):2334–2346

    Article  CAS  PubMed  Google Scholar 

  50. Höhne M, Schätzle S, Jochens H, Robins K, Bornscheuer UT (2010) Rational assignment of key motifs for function guides in silico enzyme identification. Nat Chem Biol 6(11):807–813

    Article  PubMed  Google Scholar 

  51. Verma R, Schwaneberg U, Roccatano D (2012) Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput Struct Biotechnol J 2:e201209008

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gududuru V, Hurh E, Dalton JT, Miller DD (2004) Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3-yl-amides for prostate cancer. Bioorg Med Chem Lett 14(21):5289–5293

    Article  CAS  PubMed  Google Scholar 

  53. Sun DX, Liu L, Heinz B, Kolykhalov A, Lamar J, Johnson RB, Wang QM, Yip Y, Chen S-H (2004) P4 cap modified tetrapeptidyl α-ketoamides as potent HCV NS3 protease inhibitors. Bioorg Med Chem Lett 14(16):4333–4338

    Article  CAS  PubMed  Google Scholar 

  54. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  55. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4(12):2337–2347

    Article  CAS  PubMed  Google Scholar 

  56. Dong H, Tang W, Matyjaszewski K (2007) Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromolecules 40(9):2974–2977

    Article  CAS  Google Scholar 

  57. Hosamani KM, Pattanashettar RS (2004) Design and synthesis of novel hydrazides, thiosemicarbazides, oxadiazoles, and triazoles of N, N′-bis (1-carboxy-15-hydroxy-n-pentadec-8-yl) alkyl or-aryl diamides: an approach for their biological evaluation and possible industrial utilization. Ind Eng Chem Res 43(17):4979–4999

    Article  CAS  Google Scholar 

  58. Al-Zoubi RM, Marion O, Hall DG (2008) Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angew Chem 120(15):2918–2921

    Article  Google Scholar 

  59. Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60(11):2447–2467

    Article  CAS  Google Scholar 

  60. Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A (2007) Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem 9(5):411–420

    Article  CAS  Google Scholar 

  61. Gotor-Fernandez V, Gotor V (2006) Enzymatic aminolysis and ammonolysis processes in the preparation of chiral nitrogenated compounds. Curr Org Chem 10(10):1125–1143

    Article  CAS  Google Scholar 

  62. Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480(7378):471–479

    Article  CAS  PubMed  Google Scholar 

  63. Lundberg H, Tinnis F, Selander N, Adolfsson H (2014) Catalytic amide formation from non-activated carboxylic acids and amines. Chem Soc Rev 43(8):2714–2742

    Article  CAS  PubMed  Google Scholar 

  64. Gotor-Fernández V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348(7-8):797–812

    Article  Google Scholar 

  65. Sigmund AE, McNulty KC, Nguyen D, Silverman CE, Ma P, Pesti JA, DiCosimo R (2002) Enantioselective enzymatic aminolysis of a racemic 2-isoxazolylacetate alkyl ester. Can J Chem 80(6):608–612

    Article  CAS  Google Scholar 

  66. Čeřovský V, Kula MR (2001) Studies on peptide amidase-catalysed C-terminal peptide amidation in organic media with respect to its substrate specificity. Biotechnol Appl Biochem 33(3):183–187

    Article  PubMed  Google Scholar 

  67. Khare SK, Kumar A, Kuo TM (2009) Lipase-catalyzed production of a bioactive fatty amide derivative of 7, 10-dihydroxy-8 (E)-octadecenoic acid. Bioresour Technol 100(3):1482–1485

    Article  CAS  PubMed  Google Scholar 

  68. Kim K-H, Seong BL (2001) Peptide amidation: production of peptide hormonesin vivo andin vitro. Biotechnol Bioprocess Eng 6(4):244–251

    Article  CAS  Google Scholar 

  69. Petkov D, Stoineva I (1984) Enzyme peptide synthesis by an iterative procedure in a nucleophile pool. Tetrahedron Lett 25(34):3751–3754

    Article  CAS  Google Scholar 

  70. Blum JK, Bommarius AS (2010) Amino ester hydrolase from Xanthomonas campestris pv. campestris, ATCC 33913 for enzymatic synthesis of ampicillin. J Mol Catal B Enzym 67(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Pelt S, Teeuwen R, Janssen M, Sheldon R, Dunn P, Howard R, Kumar R, Martinez I, Wong J (2011) Pseudomonas stutzeri lipase: a useful biocatalyst for aminolysis reactions. Green Chem 13(7):1791–1798

    Article  Google Scholar 

  72. Olaofe OA, Burton SG, Cowan DA, Harrison ST (2010) Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli. Biochem Eng J 52(1):19–24

    Article  CAS  Google Scholar 

  73. Nakagawa Y, Hasegawa A, Hiratake J, Sakata K (2007) Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases. Protein Eng Des Sel 20(7):339–346

    Article  CAS  PubMed  Google Scholar 

  74. Hediger MR, De Vico L, Svendsen A, Besenmatter W, Jensen JH (2012) A computational methodology to screen activities of enzyme variants. PLoS One 7(12):e49849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hediger MR, De Vico L, Rannes JB, Jäckel C, Besenmatter W, Svendsen A, Jensen JH (2013) In silico screening of 393 mutants facilitates enzyme engineering of amidase activity in CalB. PeerJ 1:e145

    Article  PubMed  PubMed Central  Google Scholar 

  76. Besenmatter W, Svendsen A, Rannes JB, Jäckel C 2013 Lipase variants and polynucleotides encoding same. Google Patents.

    Google Scholar 

  77. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14(3):347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brooks HW, Guida WC, Daniel KG (2011) The significance of chirality in drug design and development. Curr Top Med Chem 11(7):760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsieh S-Y, Binanzer M, Kreituss I, Bode JW (2012) Expanded substrate scope and catalyst optimization for the catalytic kinetic resolution of N-heterocycles. Chem Commun 48(71):8892–8894

    Article  CAS  Google Scholar 

  81. Zhou S, Fleischer S, Junge K, Das S, Addis D, Beller M (2010) Enantioselective synthesis of amines: general, efficient iron-catalyzed asymmetric transfer hydrogenation of imines. Angew Chem Int Ed 49(44):8121–8125

    Article  CAS  Google Scholar 

  82. Nugent TC, El-Shazly M (2010) Chiral amine synthesis—recent developments and trends for enamide reduction, reductive amination, and imine reduction. Adv Synth Catal 352(5):753–819

    Article  CAS  Google Scholar 

  83. Ghislieri D, Turner NJ (2014) Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal 57(5):284–300

    Article  CAS  Google Scholar 

  84. Kohls H, Steffen-Munsberg F, Höhne M (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr Opin Chem Biol 19:180–192

    Article  CAS  PubMed  Google Scholar 

  85. Koszelewski D, Tauber K, Faber K, Kroutil W (2010) ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol 28(6):324–332

    Article  CAS  PubMed  Google Scholar 

  86. Heberling MM, Wu B, Bartsch S, Janssen DB (2013) Priming ammonia lyases and aminomutases for industrial and therapeutic applications. Curr Opin Chem Biol 17(2):250–260

    Article  CAS  PubMed  Google Scholar 

  87. Lovelock SL, Lloyd RC, Turner NJ (2014) Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway. Angew Chem 126(18):4740–4744

    Article  Google Scholar 

  88. Green AP, Turner NJ, O’Reilly E (2014) Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening. Angew Chem 126(40):10890–10893

    Article  Google Scholar 

  89. https://www.cobiotech.eu/lw_resource/datapool/systemfiles/elements/files/6D54FD7A24704117E0539A695E860CA9/current/document/era_ib-2_final_seminar_berlin_3rd_call_project_hyperin.pdf.

  90. Peng Z, Wong JW, Hansen EC, Puchlopek-Dermenci AL, Clarke HJ (2014) Development of a concise, asymmetric synthesis of a smoothened receptor (SMO) inhibitor: enzymatic transamination of a 4-piperidinone with dynamic kinetic resolution. Org Lett 16(3):860–863

    Article  CAS  PubMed  Google Scholar 

  91. Kroutil W, Faber K, Clay D, Hall M, Tasnadi G, Winkler C, Mutti F, Simon R, Fuchs C, Pressnitz D (2012) Surfing the ω-transaminase and ene reductase wave: Biocatalytic asymmetric transformations for preparative organic synthesis. New Biotechnol 29:S236

    Article  Google Scholar 

  92. Zhu D, Hua L (2009) Biocatalytic asymmetric amination of carbonyl functional groups—a synthetic biology approach to organic chemistry. Biotechnol J 4(10):1420–1431

    Article  CAS  PubMed  Google Scholar 

  93. Tufvesson P, Lima-Ramos J, Jensen JS, Al-Haque N, Neto W, Woodley JM (2011) Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnol Bioeng 108(7):1479–1493

    Article  CAS  PubMed  Google Scholar 

  94. Pannuri S, Kamat SV, Martin-Garcia AR (2008) Contacting chiral primary amine, omega-transaminase, and amino acceptor to convert into ketone; stereospecific; gene expression; can be used to enrich enantiomerically a mixture of chiral amines or to synthesize stereoselectively one of a pair of chiral amines. Google Patents

    Google Scholar 

  95. Stirling DI, Matcham GW, Zeitlin AL (1994) Using omega-amino acid transaminase. Google Patents

    Google Scholar 

  96. Martin AR, DiSanto R, Plotnikov I, Kamat S, Shonnard D, Pannuri S (2007) Improved activity and thermostability of (S)-aminotransferase by error-prone polymerase chain reaction for the production of a chiral amine. Biochem Eng J 37(3):246–255

    Article  CAS  Google Scholar 

  97. Midelfort KS, Kumar R, Han S, Karmilowicz MJ, McConnell K, Gehlhaar DK, Mistry A, Chang JS, Anderson M, Villalobos A (2013) Redesigning and characterizing the substrate specificity and activity of Vibrio fluvialis aminotransferase for the synthesis of imagabalin. Protein Eng Des Sel 26(1):25–33

    Article  CAS  PubMed  Google Scholar 

  98. Narancic T, Davis R, Nikodinovic-Runic J, O’Connor KE (2015) Recent developments in biocatalysis beyond the laboratory. Biotechnol Lett:1–12

    Google Scholar 

  99. Schätzle S, Steffen-Munsberg F, Thontowi A, Höhne M, Robins K, Bornscheuer UT (2011) Enzymatic asymmetric synthesis of enantiomerically pure aliphatic, aromatic and arylaliphatic amines with (R)-selective amine transaminases. Adv Synth Catal 353(13):2439–2445

    Article  Google Scholar 

  100. Satake K, Fujita H (1953) Studies on amine dehydrogenases. J Biochem 40(6):547–556

    CAS  Google Scholar 

  101. Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS (2012) Development of an amine dehydrogenase for synthesis of chiral amines. Angew Chem Int Ed 51(16):3969–3972

    Article  CAS  Google Scholar 

  102. Abrahamson MJ, Wong JW, Bommarius AS (2013) The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines. Adv Synth Catal 355(9):1780–1786

    Article  CAS  Google Scholar 

  103. Gamenara D, de María PD (2014) Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes. Org Biomol Chem 12(19):2989–2992

    Article  CAS  PubMed  Google Scholar 

  104. Li H, Williams P, Micklefield J, Gardiner JM, Stephens G (2004) A dynamic combinatorial screen for novel imine reductase activity. Tetrahedron 60(3):753–758

    Article  CAS  Google Scholar 

  105. Meister A, Buckley SD (1957) Pyridine nucleotide-dependent reduction of the α-keto acid analogue of lysine to L-pipecolic acid. Biochim Biophys Acta 23:202–203

    Article  CAS  PubMed  Google Scholar 

  106. Baskar B, Pandian NG, Priya K, Chadha A (2004) Asymmetric reduction of alkyl 2-oxo-4-arylbutanoates and-but-3-enoates by Candida parapsilosis ATCC 7330: assignment of the absolute configuration of ethyl 2-hydroxy-4-(p-methylphenyl) but-3-enoate by 1 H NMR. Tetrahedron Asymmetry 15(24):3961–3966

    Article  CAS  Google Scholar 

  107. Mitsukura K, Suzuki M, Shinoda S, Kuramoto T, Yoshida T, Nagasawa T (2011) Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587. Biosci Biotechnol Biochem 75(9):1778–1782

    Article  CAS  PubMed  Google Scholar 

  108. Mitsukura K, Suzuki M, Tada K, Yoshida T, Nagasawa T (2010) Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase. Org Biomol Chem 8(20):4533–4535

    Article  CAS  PubMed  Google Scholar 

  109. Scheller PN, Fademrecht S, Hofelzer S, Pleiss J, Leipold F, Turner NJ, Nestl BM, Hauer B (2014) Enzyme toolbox: novel enantiocomplementary imine reductases. ChemBioChem 15(15):2201–2204

    Article  CAS  PubMed  Google Scholar 

  110. Knowles WS (2002) Asymmetric hydrogenations (Nobel Lecture). Angew Chem Int Ed 41(12):1998–2007

    Article  CAS  Google Scholar 

  111. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew Chem Int Ed 41(12):2008–2022

    Article  CAS  Google Scholar 

  112. Yang JW, Hechavarria Fonseca MT, Vignola N, List B (2005) Metal-free, organocatalytic asymmetric transfer hydrogenation of α, β-unsaturated aldehydes. Angew Chem 117(1):110–112

    Article  Google Scholar 

  113. List B, Yang JW (2006) The organic approach to asymmetric catalysis. Science 313(5793):1584–1586

    Article  CAS  PubMed  Google Scholar 

  114. Williams RE, Bruce NC (2002) ‘New uses for an Old Enzyme’–the old yellow enzyme family of flavoenzymes. Microbiology 148(6):1607–1614

    Article  CAS  PubMed  Google Scholar 

  115. Warburg O, Christian W (1932) Naturtvissenschaften, 20,688,980. Biochem Z 1932(264):438

    Google Scholar 

  116. Kohli RM, Massey V (1998) The oxidative half-reaction of old yellow enzyme the role of tyrosine 196. J Biol Chem 273(49):32763–32770

    Article  CAS  PubMed  Google Scholar 

  117. Servi S (1990) Baker’s yeast as a reagent in organic synthesis. Synthesis 1(01):1–25

    Article  Google Scholar 

  118. Hall M, Hauer B, Stuermer R, Kroutil W, Faber K (2006) Asymmetric whole-cell bioreduction of an α,β-unsaturated aldehyde (citral): competing prim-alcohol dehydrogenase and C–C lyase activities. Tetrahedron Asymmetry 17(21):3058–3062

    Article  CAS  Google Scholar 

  119. Stueckler C, Hall M, Ehammer H, Pointner E, Kroutil W, Macheroux P, Faber K (2007) Stereocomplementary bioreduction of α, β-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme-and substrate-based stereocontrol. Org Lett 9(26):5409–5411

    Article  CAS  PubMed  Google Scholar 

  120. Mueller NJ, Stueckler C, Hauer B, Baudendistel N, Housden H, Bruce NC, Faber K (2010) The substrate spectra of pentaerythritol tetranitrate reductase, morphinone reductase, n-ethylmaleimide reductase and estrogen-binding protein in the asymmetric bioreduction of activated alkenes. Adv Synth Catal 352(2-3):387–394

    Article  CAS  Google Scholar 

  121. Reich S, Hoeffken HW, Rosche B, Nestl BM, Hauer B (2012) Crystal structure determination and mutagenesis analysis of the ene reductase NCR. ChemBioChem 13(16):2400–2407

    Article  CAS  PubMed  Google Scholar 

  122. Reich S, Kress N, Nestl BM, Hauer B (2014) Variations in the stability of NCR ene reductase by rational enzyme loop modulation. J Struct Biol 185(2):228–233

    Article  CAS  PubMed  Google Scholar 

  123. Nestl BM, Hammer SC, Nebel BA, Hauer B (2014) New generation of biocatalysts for organic synthesis. Angew Chem Int Ed 53(12):3070–3095

    Article  CAS  Google Scholar 

  124. Brenna E, Gatti FG, Manfredi A, Monti D, Parmeggiani F (2011) Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Org Process Res Dev 16(2):262–268

    Article  Google Scholar 

  125. Mangan D, Miskelly I, Moody TS (2012) A three-enzyme system involving an ene-reductase for generating valuable chiral building blocks. Adv Synth Catal 354(11-12):2185–2190

    Article  CAS  Google Scholar 

  126. Winkler CK, Clay D, Davies S, O’Neill P, McDaid P, Debarge S, Steflik J, Karmilowicz M, Wong JW, Faber K (2013) Chemoenzymatic asymmetric synthesis of pregabalin precursors via asymmetric bioreduction of β-cyanoacrylate esters using ene-reductases. J Organic Chem 78(4):1525–1533

    Article  CAS  Google Scholar 

  127. Fryszkowska A, Fisher K, Gardiner JM, Stephens GM (2010) A short, chemoenzymatic route to chiral β-aryl-γ-amino acids using reductases from anaerobic bacteria. Org Biomol Chem 8(3):533–535

    Article  CAS  PubMed  Google Scholar 

  128. Debarge S, McDaid P, O’Neill P, Frahill J, Wong JW, Carr D, Burrell A, Davies S, Karmilowicz M, Steflik J (2014) evaluation of several routes to advanced pregabalin intermediates: synthesis and enantioselective enzymatic reduction using ene-reductases. Org Process Res Dev 18(1):109–121

    Article  CAS  Google Scholar 

  129. Winkler CK, Clay D, Turrini NG, Lechner H, Kroutil W, Davies S, Debarge S, O’Neill P, Steflik J, Karmilowicz M (2014) Nitrile as activating group in the asymmetric bioreduction of β-cyanoacrylic acids catalyzed by ene-reductases. Adv Synth Catal 356(8):1878–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Knaus T, Mutti FG, Humphreys LD, Turner NJ, Scrutton NS (2015) Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α, β-unsaturated aldehydes. Org Biomol Chem 13(1):223–233

    Article  CAS  PubMed  Google Scholar 

  131. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417(6888):507–514

    Article  CAS  PubMed  Google Scholar 

  132. Wender PA, Hilinski MK, Mayweg AV (2005) Late-stage intermolecular CH activation for lead diversification: a highly chemoselective oxyfunctionalization of the C-9 position of potent bryostatin analogues. Org Lett 7(1):79–82

    Article  CAS  PubMed  Google Scholar 

  133. Das S, Incarvito CD, Crabtree RH, Brudvig GW (2006) Molecular recognition in the selective oxygenation of saturated CH bonds by a dimanganese catalyst. Science 312(5782):1941–1943

    Article  CAS  PubMed  Google Scholar 

  134. Chen MS, White MC (2007) A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318(5851):783–787

    Article  CAS  PubMed  Google Scholar 

  135. Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21(12):543–549

    Article  CAS  PubMed  Google Scholar 

  136. Hollmann F, Arends IWCE, Buehler K, Schallmey A, Bühler B (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13(2):226–265

    Article  CAS  Google Scholar 

  137. Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke WD, Sprenger GA, Beifuß U, Klemm E (2013) Selective catalytic oxidation of C–H bonds with molecular oxygen. ChemCatChem 5(1):82–112

    Article  CAS  Google Scholar 

  138. Brown CM, Reisfeld B, Mayeno AN (2008) Cytochromes P450: a structure-based summary of biotransformations using representative substrates. Drug Metab Rev 40(1):1–100

    Article  CAS  PubMed  Google Scholar 

  139. Sakaki T (2012) Practical application of cytochrome P450. Biol Pharm Bull 35(6):844–849

    Article  CAS  PubMed  Google Scholar 

  140. Omura T (1999) Forty years of cytochrome P450. Biochem Biophys Res Commun 266(3):690–698

    Article  CAS  PubMed  Google Scholar 

  141. Hanlon SP, Friedberg T, Wolf CR, Ghisalba O, Kittelmann M (2007) Recombinant yeast and bacteria that express human P450s: bioreactors for drug discovery, development, and biotechnology. Modern Biooxidation:233–252

    Google Scholar 

  142. Schroer K, Kittelmann M, Lütz S (2010) Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis. Biotechnol Bioeng 106(5):699–706

    Article  CAS  PubMed  Google Scholar 

  143. Vail RB, Homann MJ, Hanna I, Zaks A (2005) Preparative synthesis of drug metabolites using human cytochrome P450s 3A4, 2C9 and 1A2 with NADPH-P450 reductase expressed in Escherichia coli. J Ind Microbiol Biotechnol 32(2):67–74

    Article  CAS  PubMed  Google Scholar 

  144. Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH (2006) Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol Bioeng 93(3):494–499

    Article  CAS  PubMed  Google Scholar 

  145. Kabumoto H, Miyazaki K, Arisawa A (2009) Directed evolution of the actinomycete cytochrome P450 MoxA (CYP105) for enhanced activity. Biosci Biotechnol Biochem 73(9):1922–1927

    Article  CAS  PubMed  Google Scholar 

  146. Bae J-W, Doo E-H, Shin S-H, Lee S-G, Jeong Y-J, Park J-B, Park S (2010) Development of a recombinant Escherichia coli-based biocatalyst to enable high styrene epoxidation activity with high product yield on energy source. Process Biochem 45(2):147–152

    Article  CAS  Google Scholar 

  147. Baldwin CV, Wohlgemuth R, Woodley JM (2008) The first 200-L scale asymmetric Baeyer–Villiger oxidation using a whole-cell biocatalyst. Org Process Res Dev 12(4):660–665

    Article  CAS  Google Scholar 

  148. Collins AM, Woodley JM, Liddell JM (1995) Determination of reactor operation for the microbial hydroxylation of toluene in a two-liquid phase process. J Ind Microbiol 14(5):382–388

    Article  CAS  Google Scholar 

  149. Shibasaki T, Mori H, Ozaki A (2000) Enzymatic production of trans-4-hydroxy-L-proline by regio-and stereospecific hydroxylation of L-proline. Biosci Biotechnol Biochem 64(4):746–750

    Article  CAS  PubMed  Google Scholar 

  150. Han GH, Shin H-J, Kim SW (2008) Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzym Microb Technol 42(7):617–623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, R., Martinez, C.A., Wong, J.W. (2022). Expanding the Biocatalysis Toolbox. In: Richardson, P.F. (eds) Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1579-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1579-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1577-5

  • Online ISBN: 978-1-0716-1579-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics