Skip to main content

Self-Assembly of Bombyx mori Silk Fibroin

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

Abstract

Silk fibroin from Bombyx mori (silkworm) distinguishes for its unique mechanical performance, controllable degradation rates, and easily large-scale production, making it attractive models for a variety of biomaterial design. These outstanding properties of silk fibroin originate from its unique modular composition of silk proteins. To exploit the structure–function relationship and fabricate silk fibroin–based biomaterials, comprehensive strategies to uncover assembly behaviors of fibrous proteins are necessary. This chapter describes methods to produce regenerated silk fibroin protein from Bombyx mori silk and their self-assembly strategies. This could provide insight into the fabrication of various silk fibroin–based biomaterials, such as hydrogels, tubes, sponges, fibers, microspheres, and diverse thin film patterns, which can be used for textiles, electronics and optics, environmental engineering, and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  CAS  Google Scholar 

  2. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528

    Article  CAS  Google Scholar 

  3. Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S (2019) Biological material interfaces as inspiration for mechanical and optical material designs. Chem Rev 119:12279–12336

    Article  CAS  Google Scholar 

  4. Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S (2018) Design, fabrication, and function of silk-based nanomaterials. Adv Funct Mater 28:1805305

    Article  Google Scholar 

  5. Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB (2019) Comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomater Sci Eng 5:2054–2078

    Article  CAS  Google Scholar 

  6. Mason TO, Shimanovich U (2018) Fibrous protein self-assembly in biomimetic materials. Adv Mater 30:1706462

    Article  Google Scholar 

  7. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  Google Scholar 

  8. Tao H, Kaplan DL, Omenetto FG (2012) Silk materials—a road to sustainable high technology. Adv Mater 24:2824–2837

    Article  CAS  Google Scholar 

  9. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  CAS  Google Scholar 

  10. Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105:6590

    Article  CAS  Google Scholar 

  11. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of h-chain, l-chain, and p25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  CAS  Google Scholar 

  12. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Protein Struct, Funct. Bioinf 44:119–122

    CAS  Google Scholar 

  13. Zhou C-Z, Confalonieri F, Jacquet M, Perasso R, Li Z-G, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122

    Article  CAS  Google Scholar 

  14. Martel A, Burghammer M, Davies RJ, Di Cola E, Vendrely C, Riekel C (2008) Silk fiber assembly studied by synchrotron radiation saxs/waxs and raman spectroscopy. J Am Chem Soc 130:17070–17074

    Article  CAS  Google Scholar 

  15. Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR (2001) Conformation transition kinetics of regenerated bombyx mori silk fibroin membrane monitored by time-resolved ftir spectroscopy. Biophys Chem 89:25–34

    Article  CAS  Google Scholar 

  16. Canetti M, Seves A, Secundo F, Vecchio G (1989) Cd and small-angle x-ray scattering of silk fibroin in solution. Biopolymers 28:1613–1624

    Article  CAS  Google Scholar 

  17. Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan DL, Zhu H (2013) Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 9:7806–7813

    Article  CAS  Google Scholar 

  18. Ling S, Qin Z, Huang W, Cao S, Kaplan DL, Buehler MJ (2017) Design and function of biomimetic multilayer water purification membranes. Sci Adv 3:e1601939

    Article  Google Scholar 

  19. Bai S, Zhang X, Lu Q, Sheng W, Liu L, Dong B, Kaplan DL, Zhu H (2014) Reversible hydrogel-solution system of silk with high beta-sheet content. Biomacromolecules 15:3044–3051

    Article  CAS  Google Scholar 

  20. Zhong J, Ma M, Li W, Zhou J, Yan Z, He D (2014) Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures. Biopolymers 101:1181–1192

    Article  CAS  Google Scholar 

  21. Greving I, Cai M, Vollrath F, Schniepp HC (2012) Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules 13:676–682

    Article  CAS  Google Scholar 

  22. Hu X, Shmelev K, Sun L, Gil E-S, Park S-H, Cebe P, Kaplan DL (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696

    Article  CAS  Google Scholar 

  23. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    Article  CAS  Google Scholar 

  24. Ling S, Li C, Adamcik J, Shao Z, Chen X, Mezzenga R (2014) Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils. Adv Mater 26:4569–4574

    Article  CAS  Google Scholar 

  25. Ishida M, Asakura T, Yokoi M, Saito H (1990) Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studies by high-resolution solid-state carbon-13 nmr spectroscopy. Macromolecules 23:88–94

    Article  CAS  Google Scholar 

  26. Dubey P, Murab S, Karmakar S, Chowdhury PK, Ghosh S (2015) Modulation of self-assembly process of fibroin: an insight for regulating the conformation of silk biomaterials. Biomacromolecules 16:3936–3944

    Article  CAS  Google Scholar 

  27. Xiao L, Liu S, Yao D, Ding Z, Fan Z, Lu Q, Kaplan DL (2017) Fabrication of silk scaffolds with nanomicroscaled structures and tunable stiffness. Biomacromolecules 18:2073–2079

    Article  CAS  Google Scholar 

  28. Gong Z, Huang L, Yang Y, Chen X, Shao Z (2009) Two distinct β-sheet fibrils from silk protein. Chem Commun. https://doi.org/10.1039/B914218E:7506-7508

  29. Callone E, Dirè S, Hu X, Motta A (2016) Processing influence on molecular assembling and structural conformations in silk fibroin: elucidation by solid-state NMR. ACS Biomater Sci Eng 2:758–767

    Article  CAS  Google Scholar 

  30. Ma M, Zhong J, Li W, Zhou J, Yan Z, Ding J, He D (2013) Comparison of four synthetic model peptides to understand the role of modular motifs in the self-assembly of silk fibroin. Soft Matter 9:11325–11333

    Article  CAS  Google Scholar 

  31. Nguyen AT, Huang Q-L, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: From hierarchical structure to ultra performance. Small 11:1039–1054

    Article  CAS  Google Scholar 

  32. Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G (2018) Protein-mimetic peptide nanofibers: motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci 80:94–124

    Article  CAS  Google Scholar 

  33. Ling S, Dinjaski N, Ebrahimi D, Wong JY, Kaplan DL, Buehler MJ (2016) Conformation transitions of recombinant spidroins via integration of time-resolved ftir spectroscopy and molecular dynamic simulation. ACS Biomater Sci Eng 2:1298–1308

    Article  CAS  Google Scholar 

  34. Ling S, Qi Z, Knight DP, Shao Z, Chen X (2011) Synchrotron ftir microspectroscopy of single natural silk fibers. Biomacromolecules 12:3344–3349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges insightful discussion and suggestions from Prof. Shengjie Ling and thanks Dr. Xinyang Wang from ShanghaiTech University, Dr. Linlin Wei from Bruker, and Ph.D. student Yawen Liu for the helpful suggestion with NanoIR characterization method . Financial support was provided by the National Natural Science Foundation of China (51703128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, N. (2021). Self-Assembly of Bombyx mori Silk Fibroin. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics