Skip to main content

Biological Network Mining

  • Protocol
  • First Online:
Modeling Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

In this book chapter, we introduce a pipeline to mine significant biomedical entities (or bioentities) in biological networks. Our focus is on prioritizing both bioentities themselves and the associations between bioentities in order to reveal their biological functions. We will introduce three tools BEERE, WIPER, and PAGER 2.0 that can be used together for network analysis and function interpretation: (1) BEERE is a network analysis tool for “Biomedical Entity Expansion, Ranking and Explorations,” (2) WIPER is an entity-to-entity association ranking tool, and (3) PAGER 2.0 is a service for gene enrichment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guala D, Sonnhammer ELL (2017) A large-scale benchmark of gene prioritization methods. Sci Rep 7:46598. https://doi.org/10.1038/srep46598

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen JY, Shen C, Sivachenko AY (2006) Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput:367–378

    Google Scholar 

  3. Theodosiou T, Efstathiou G, Papanikolaou N et al (2017) NAP: the network analysis profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. BMC Res Notes 10(1):278. https://doi.org/10.1186/s13104-017-2607-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Duenas-Osorio L, Padgett JE (2015) A new mutually reinforcing network node and link ranking algorithm. Sci Rep 5:15141. https://doi.org/10.1038/srep15141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Li M, Wang H et al (2012) Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans Comput Biol Bioinform 9(4):1070–1080. https://doi.org/10.1109/TCBB.2011.147

    Article  PubMed  Google Scholar 

  6. Nitsch D, Tranchevent LC, Goncalves JP et al (2011) PINTA: a web server for network-based gene prioritization from expression data. Nucleic Acids Res 39(Web Server issue):W334–W338. https://doi.org/10.1093/nar/gkr289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Bardes EE, Aronow BJ et al (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311. https://doi.org/10.1093/nar/gkp427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adie EA, Adams RR, Evans KL et al (2006) SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22(6):773–774. https://doi.org/10.1093/bioinformatics/btk031

    Article  CAS  PubMed  Google Scholar 

  9. Yu W, Wulf A, Liu T et al (2008) Gene prospector: an evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases. BMC Bioinformatics 9:528. https://doi.org/10.1186/1471-2105-9-528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tranchevent LC, Barriot R, Yu S et al (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36(Web Server issue):W377–W384. https://doi.org/10.1093/nar/gkn325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doncheva NT, Kacprowski T, Albrecht M (2012) Recent approaches to the prioritization of candidate disease genes. Wiley Interdiscip Rev Syst Biol Med 4(5):429–442. https://doi.org/10.1002/wsbm.1177

    Article  CAS  PubMed  Google Scholar 

  12. Bornigen D, Tranchevent LC, Bonachela-Capdevila F et al (2012) An unbiased evaluation of gene prioritization tools. Bioinformatics 28(23):3081–3088. https://doi.org/10.1093/bioinformatics/bts581

    Article  CAS  PubMed  Google Scholar 

  13. Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13(8):523–536. https://doi.org/10.1038/nrg3253

    Article  CAS  PubMed  Google Scholar 

  14. Oti M, Ballouz S, Wouters MA (2011) Web tools for the prioritization of candidate disease genes. Methods Mol Biol 760:189–206. https://doi.org/10.1007/978-1-61779-176-5_12

    Article  CAS  PubMed  Google Scholar 

  15. Piro RM, Di Cunto F (2012) Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J 279(5):678–696. https://doi.org/10.1111/j.1742-4658.2012.08471.x

    Article  CAS  PubMed  Google Scholar 

  16. Tranchevent LC, Capdevila FB, Nitsch D et al (2011) A guide to web tools to prioritize candidate genes. Brief Bioinform 12(1):22–32. https://doi.org/10.1093/bib/bbq007

    Article  CAS  PubMed  Google Scholar 

  17. Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  18. Chen JY, Pandey R, Nguyen TM (2017) HAPPI-2: a comprehensive and high-quality map of human annotated and predicted protein interactions. BMC Genomics 18(1):182. https://doi.org/10.1186/s12864-017-3512-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lupski JR, Reid JG, Gonzaga-Jauregui C et al (2010) Whole-genome sequencing in a patient with Charcot-Marie-tooth neuropathy. N Engl J Med 362(13):1181–1191. https://doi.org/10.1056/NEJMoa0908094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Isik Z, Baldow C, Cannistraci CV et al (2015) Drug target prioritization by perturbed gene expression and network information. Sci Rep 5:17417. https://doi.org/10.1038/srep17417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sivachenko AY, Yuryev A (2007) Pathway analysis software as a tool for drug target selection, prioritization and validation of drug mechanism. Expert Opin Ther Targets 11(3):411–421. https://doi.org/10.1517/14728222.11.3.411

    Article  PubMed  Google Scholar 

  22. Yue Z, Arora I, Zhang EY et al (2017) Repositioning drugs by targeting network modules: a Parkinson's disease case study. BMC Bioinformatics 18(Suppl 14):532. https://doi.org/10.1186/s12859-017-1889-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Denecke K (2008) Semantic structuring of and information extraction from medical documents using the UMLS. Methods Inf Med 47(5):425–434

    Article  CAS  Google Scholar 

  24. Burger G, Abu-Hanna A, de Keizer N et al (2016) Natural language processing in pathology: a scoping review. J Clin Pathol. https://doi.org/10.1136/jclinpath-2016-203872

  25. Matthies F, Hahn U (2017) Scholarly information extraction is going to make a quantum leap with PubMed central (PMC). Stud Health Technol Inform 245:521–525

    PubMed  Google Scholar 

  26. Yang H, Robinson PN, Wang K (2015) Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods 12(9):841–843. https://doi.org/10.1038/nmeth.3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song Y, Kim E, Lee GG et al (2005) POSBIOTM-NER: a trainable biomedical named-entity recognition system. Bioinformatics 21(11):2794–2796. https://doi.org/10.1093/bioinformatics/bti414

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Zhang Y, Ren X et al (2018) Cross-type biomedical named entity recognition with deep multi-task learning. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty869

  29. Zhao Z, Yang Z, Luo L et al (2017) Disease named entity recognition from biomedical literature using a novel convolutional neural network. BMC Med Genet 10(Suppl 5):73. https://doi.org/10.1186/s12920-017-0316-8

    Article  Google Scholar 

  30. Lee S, Kim D, Lee K et al (2016) BEST: next-generation biomedical entity search tool for knowledge discovery from biomedical literature. PLoS One 11(10):e0164680. https://doi.org/10.1371/journal.pone.0164680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yue Z, Nguyen T, Zhang E et al (2019) WIPER: weighted in-path edge ranking for biomolecular association networks. Quant Biol 7(4):313–326. https://doi.org/10.1007/s40484-019-0180-y

    Article  CAS  Google Scholar 

  32. Ivanov AA, Khuri FR, Fu H (2013) Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci 34(7):393–400. https://doi.org/10.1016/j.tips.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yue Z, Zheng Q, Neylon MT et al (2018) PAGER 2.0: an update to the pathway, annotated-list and gene-signature electronic repository for human network biology. Nucleic Acids Res 46(D1):D668–D676. https://doi.org/10.1093/nar/gkx1040

    Article  CAS  PubMed  Google Scholar 

  34. Yue Z, Kshirsagar MM, Nguyen T et al (2015) PAGER: constructing PAGs and new PAG-PAG relationships for network biology. Bioinformatics 31(12):i250–i257. https://doi.org/10.1093/bioinformatics/btv265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kilicoglu H, Shin D, Fiszman M et al (2012) SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics 28(23):3158–3160. https://doi.org/10.1093/bioinformatics/bts591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang H, Wu X, Sonachalam M et al (2012) PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries. BMC Bioinformatics 13(Suppl 15):S2. https://doi.org/10.1186/1471-2105-13-S15-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yue, Z., Yan, D., Guo, G., Chen, J.Y. (2021). Biological Network Mining. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics