Skip to main content

Mathematical Programming for Modeling Expression of a Gene Using Gurobi Optimizer to Identify Its Transcriptional Regulators

  • Protocol
  • First Online:
Modeling Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

The cell expresses various genes in specific contexts with respect to internal and external perturbations to invoke appropriate responses. Transcription factors (TFs) orchestrate and define the expression level of genes by binding to their regulatory regions. Dysregulated expression of TFs often leads to aberrant expression changes of their target genes and is responsible for several diseases including cancers. In the last two decades, several studies experimentally identified target genes of several TFs. However, these studies are limited to a small fraction of the total TFs encoded by an organism, and only for those amenable to experimental settings. Experimental limitations lead to many computational techniques having been proposed to predict target genes of TFs. Linear modeling of gene expression is one of the most promising computational approaches, readily applicable to the thousands of expression datasets available in the public domain across diverse phenotypes. Linear models assume that the expression of a gene is the sum of expression of TFs regulating it. In this chapter, I introduce mathematical programming for the linear modeling of gene expression, which has certain advantages over the conventional statistical modeling approaches. It is fast, scalable to genome level and most importantly, allows mixed integer programming to tune the model outcome with prior knowledge on gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CRICK FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163. http://www.ncbi.nlm.nih.gov/pubmed/13580867

    CAS  PubMed  Google Scholar 

  2. Muley VY, Pathania A (2017) Gene Expression. In: Vonk J, Shackelford T (eds) Encycl Anim Cogn Behav. Springer, Cham

    Google Scholar 

  3. Pathania A, Muley VY (2017) Gene expression profiling. In: Vonk J, Shackelford T (eds) Encycl Anim Cogn Behav. Springer, Cham

    Google Scholar 

  4. Law CW, Alhamdoosh M, Su S et al (2018) RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000 Res 5:1408. https://doi.org/10.12688/f1000research.9005.3

  5. Cheng C, Alexander R, Min R, Leng J, Yip KY, Rozowsky J et al (2012) Understanding transcriptional regulation by integrative analysis of TF binding data. Genome Res 22(9):1658–1667

    Article  CAS  Google Scholar 

  6. Taylor RC, Acquaah-Mensah G, Singhal M, Malhotra D, Biswal S (2008) Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress. PLoS Comput Biol 4(8):e1000166

    Article  Google Scholar 

  7. Setty M, Helmy K, Khan AA, Silber J, Arvey A, Neezen F et al (2012) Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma. Mol Syst Biol 8:605

    Article  Google Scholar 

  8. Poos AM, Maicher A, Dieckmann AK, Oswald M, Eils R, Kupiec M et al (2016) Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast. Nucleic Acids Res 44:e93. https://doi.org/10.1093/nar/gkw111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796–804

    Article  CAS  Google Scholar 

  10. Gurobi Optimization LLC. Gurobi optimizer reference manual. 2020. http://www.gurobi.com

  11. Schacht T, Oswald M, Eils R, Eichmüller SB, König R (2014) Estimating the activity of TFs by the effect on their target genes. Bioinformatics 30:i401–i407. https://doi.org/10.1093/bioinformatics/btu446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human TFs: Function, expression and evolution. Nat Rev Genet 10:252–263. http://www.ncbi.nlm.nih.gov/pubmed/19274049

    Article  CAS  Google Scholar 

  13. Muley VY, López-Victorio CJ, Ayala-Sumuano JT, González-Gallardo A, González-Santos L, Lozano-Flores C et al (2020) Conserved and divergent expression dynamics during early patterning of the telencephalon in mouse and chick embryos. Prog Neurobiol 186:101735

    Article  CAS  Google Scholar 

  14. Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW et al (2010) ATRX Partners with Cohesin and MeCP2 and Contributes to Developmental Silencing of Imprinted Genes in the Brain. Dev Cell 18:191–202. https://linkinghub.elsevier.com/retrieve/pii/S153458071000016X

    Article  CAS  Google Scholar 

  15. Fujii Y, Yoshihashi K, Suzuki H, Tsutsumi S, Mutoh H, Maeda S et al (2012) CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proc Natl Acad Sci U S A 109:20584–20589. http://www.ncbi.nlm.nih.gov/pubmed/23112162

    Article  CAS  Google Scholar 

  16. Ostapcuk V, Mohn F, Carl SH, Basters A, Hess D, Iesmantavicius V et al (2018) Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes. Nature 557:739–743. http://www.nature.com/articles/s41586-018-0153-8

    Article  CAS  Google Scholar 

  17. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DGAPA-UNAM grant IA203920 to V.Y.M. The author would like to sincerely thank Anne Hahn (Queensland Brain Institute, Australia) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaykumar Yogesh Muley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muley, V.Y. (2021). Mathematical Programming for Modeling Expression of a Gene Using Gurobi Optimizer to Identify Its Transcriptional Regulators. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics