Skip to main content

Pseudogenes as Biomarkers and Therapeutic Targets in Human Cancers

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2324))

Abstract

Pseudogenes are commonly labeled as “junk DNA” given their perceived nonfunctional status. However, the advent of large-scale genomics projects prompted a revisit of pseudogene biology, highlighting their key functional and regulatory roles in numerous diseases, including cancers. Integrative analyses of cancer data have shown that pseudogenes can be transcribed and even translated, and that pseudogenic DNA, RNA, and proteins can interfere with the activity and function of key protein coding genes, acting as regulators of oncogenes and tumor suppressors. Capitalizing on the available clinical research, we are able to get an insight into the spread and variety of pseudogene biomarker and therapeutic potential. In this chapter, we describe pseudogenes that fulfill their role as diagnostic or prognostic biomarkers, both as unique elements and in collaboration with other genes or pseudogenes. We also report that the majority of prognostic pseudogenes are overexpressed and exert an oncogenic role in colorectal, liver, lung, and gastric cancers. Finally, we highlight a number of pseudogenes that can establish future therapeutic avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Carbonell Sala S, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, García Girón C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner M-M, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–D773. https://doi.org/10.1093/nar/gky955

    Article  CAS  PubMed  Google Scholar 

  2. Sisu C, Pei B, Leng J, Frankish A, Zhang Y, Balasubramanian S, Harte R, Wang D, Rutenberg-Schoenberg M, Clark W, Diekhans M, Rozowsky J, Hubbard T, Harrow J, Gerstein MB (2014) Comparative analysis of pseudogenes across three phyla. Proc Natl Acad Sci U S A 111(37):13361–13366. https://doi.org/10.1073/pnas.1407293111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bischof JM, Chiang AP, Scheetz TE, Stone EM, Casavant TL, Sheffield VC, Braun TA (2006) Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutat 27(6):545–552. https://doi.org/10.1002/humu.20335

    Article  CAS  PubMed  Google Scholar 

  4. Cooke SL, Shlien A, Marshall J, Pipinikas CP, Martincorena I, Tubio JMC, Li Y, Menzies A, Mudie L, Ramakrishna M, Yates L, Davies H, Bolli N, Bignell GR, Tarpey PS, Behjati S, Nik-Zainal S, Papaemmanuil E, Teixeira VH, Raine K, O’Meara S, Dodoran MS, Teague JW, Butler AP, Iacobuzio-Donahue C, Santarius T, Grundy RG, Malkin D, Greaves M, Munshi N, Flanagan AM, Bowtell D, Martin S, Larsimont D, Reis-Filho JS, Boussioutas A, Taylor JA, Hayes ND, Janes SM, Futreal PA, Stratton MR, McDermott U, Campbell PJ, Group IBC (2014) Processed pseudogenes acquired somatically during cancer development. Nat Commun 5:3644. https://doi.org/10.1038/ncomms4644

    Article  CAS  PubMed  Google Scholar 

  5. Kazazian HH Jr (2014) Processed pseudogene insertions in somatic cells. Mob DNA 5:20. https://doi.org/10.1186/1759-8753-5-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 103(9):3220–3225. https://doi.org/10.1073/pnas.0511307103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jasra N, Sanyal SN, Khera S (1990) Effect of thiabendazole and fenbendazole on glucose uptake and carbohydrate metabolism in Trichuris globulosa. Vet Parasitol 35(3):201–209. https://doi.org/10.1016/0304-4017(90)90055-g

    Article  CAS  PubMed  Google Scholar 

  8. An Y, Furber KL, Ji S (2017) Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med 21(1):185–192. https://doi.org/10.1111/jcmm.12952

    Article  CAS  PubMed  Google Scholar 

  9. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038. https://doi.org/10.1038/nature09144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan W-L, Yuo C-Y, Yang W-K, Hung S-Y, Chang Y-S, Chiu C-C, Yeh K-T, Huang H-D, Chang J-G (2013) Transcribed pseudogene ψPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res 41(6):3734–3747. https://doi.org/10.1093/nar/gkt047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chakravarthi BV, Dedigama-Arachchige P, Carskadon S, Sundaram SK, Li J, K-HH W, Chandrashekar DS, Peabody JO, Stricker H, Hwang C, Chitale DA, Williamson SR, Gupta NS, Navone NM, Rogers C, Menon M, Varambally S, Palanisamy N (2019) Pseudogene associated recurrent gene fusion in prostate cancer. Neoplasia 21(10):989–1002. https://doi.org/10.1016/j.neo.2019.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Wan L, Wang W, Xi W-J, Yang A-G, Wang T (2020) Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 10(4):1479–1499. https://doi.org/10.7150/thno.40659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ji Z, Song R, Regev A, Struhl K (2015) Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. elife 4:e08890. https://doi.org/10.7554/eLife.08890

    Article  PubMed  PubMed Central  Google Scholar 

  14. Korrodi-Gregório L, Abrantes J, Muller T, Melo-Ferreira J, Marcus K, da Cruz e Silva OAB, Fardilha M, Esteves PJ (2013) Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evol Biol 13:242. https://doi.org/10.1186/1471-2148-13-242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci Signal 5(242):re5. https://doi.org/10.1126/scisignal.2002858

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Jensen MA, Zenklusen JC (2016) A practical guide to the cancer genome atlas (TCGA). Methods Mol Biol 1418:111–141. https://doi.org/10.1007/978-1-4939-3578-9_6

    Article  PubMed  Google Scholar 

  17. TARGET. https://ocg.cancer.gov/programs/target. Accessed 20 Apr 2020

  18. Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H, Stein LD, Ferretti V (2019) The international cancer genome consortium data portal. Nat Biotechnol 37(4):367–369. https://doi.org/10.1038/s41587-019-0055-9

    Article  CAS  PubMed  Google Scholar 

  19. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu Y-M, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, Iyer MK, Barrette T, Shanmugam A, Dhanasekaran SM, Palanisamy N, Chinnaiyan AM (2012) Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 149(7):1622–1634. https://doi.org/10.1016/j.cell.2012.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valdes C, Capobianco E (2014) Methods to detect transcribed pseudogenes: RNA-Seq discovery allows learning through features. Methods Mol Biol 1167:157–183. https://doi.org/10.1007/978-1-4939-0835-6_11

    Article  PubMed  Google Scholar 

  21. Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, Diao L, Xu Y, Verhaak RGW, Liang H (2014) The pan-cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat Commun 5:3963. https://doi.org/10.1038/ncomms4963

    Article  CAS  PubMed  Google Scholar 

  22. Lai J, An J, Nelson CC, Lehman ML, Batra J, Clements JA (2014) Analysis of androgen and anti-androgen regulation of KLK-related peptidase 2, 3, and 4 alternative transcripts in prostate cancer. Biol Chem 395(9):1127–1132. https://doi.org/10.1515/hsz-2014-0149

    Article  CAS  PubMed  Google Scholar 

  23. Khoo C, Blanchard RK, Sullivan VK, Cousins RJ (1997) Human cysteine-rich intestinal protein: cDNA cloning and expression of recombinant protein and identification in human peripheral blood mononuclear cells. Protein Expr Purif 9(3):379–387. https://doi.org/10.1006/prep.1996.0709

    Article  CAS  PubMed  Google Scholar 

  24. Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, Ribeca P (2012) Fast computation and applications of genome mappability. PLoS One 7(1):e30377. https://doi.org/10.1371/journal.pone.0030377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Kang K, Krahn JM, Croutwater N, Lee K, Umbach DM, Li L (2017) A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genomics 18(1):508. https://doi.org/10.1186/s12864-017-3906-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Group F-NBW (2016) BEST (Biomakrers, EndpointS, and Other Tools) resource. Food and Drug Administration (US), Silver Spring, MD

    Google Scholar 

  27. Yu J, Zhang J, Zhou L, Li H, Deng Z-Q, Meng B (2019) The octamer-binding transcription factor 4 (OCT4) pseudogene, POU domain class 5 transcription factor 1B (POU5F1B), is upregulated in cervical cancer and down-regulation inhibits cell proliferation and migration and induces apoptosis in cervical cancer cell lines. Med Sci Monit 25:1204–1213. https://doi.org/10.12659/msm.912109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi J, Zhou L-Y, Yi Y-Y, Zhu X, Su X-Y, Zhao Q, Lin J, Qian J, Deng Z-Q (2019) Low expression of pseudogene POU5F1B affects diagnosis and prognosis in acute myeloid leukemia (AML). Med Sci Monit 25:4952–4959. https://doi.org/10.12659/msm.914352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaidya M, Bacchus M, Sugaya K (2018) Differential sequences of exosomal NANOG DNA as a potential diagnostic cancer marker. PLoS One 13(5):e0197782. https://doi.org/10.1371/journal.pone.0197782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lui KY, Peng H-R, Lin J-R, Qiu C-H, Chen H-A, Fu R-D, Cai C-J, Lu M-Q (2016) Pseudogene integrator complex subunit 6 pseudogene 1 (INTS6P1) as a novel plasma-based biomarker for hepatocellular carcinoma screening. Tumour Biol 37(1):1253–1260. https://doi.org/10.1007/s13277-015-3899-8

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Y, He P, Xie X, Sun C (2019) Knockdown of SUMO1P3 represses tumor growth and invasion and enhances radiosensitivity in hepatocellular carcinoma. Mol Cell Biochem 450(1–2):125–134. https://doi.org/10.1007/s11010-018-3379-8

    Article  CAS  PubMed  Google Scholar 

  32. Yang C, Wang L, Sun J, Zhou J-H, Tan Y-L, Wang Y-F, You H, Wang Q-X, Kang C-S (2019) Identification of long non-coding RNA HERC2P2 as a tumor suppressor in glioma. Carcinogenesis 40(8):956–964. https://doi.org/10.1093/carcin/bgz043

    Article  CAS  PubMed  Google Scholar 

  33. Yang W, Du WW, Li X, Yee AJ, Yang BB (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35(30):3919–3931. https://doi.org/10.1038/onc.2015.460

    Article  CAS  PubMed  Google Scholar 

  34. Liu F, Gong R, He B, Chen F, Hu Z (2018) TUSC2P suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2 expression and correlates with disease prognosis. BMC Cancer 18(1):894. https://doi.org/10.1186/s12885-018-4804-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu J, Xing Y, Xu L, Chen W, Cao W, Zhang C (2017) Decreased expression of pseudogene PTENP1 promotes malignant behaviours and is associated with the poor survival of patients with HNSCC. Sci Rep 7:41179. https://doi.org/10.1038/srep41179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shang J, Wang Z, Chen W, Yang Z, Zheng L, Wang S, Li S (2019) Pseudogene CHIAP2 inhibits proliferation and invasion of lung adenocarcinoma cells by means of the WNT pathway. J Cell Physiol 234(8):13735–13746. https://doi.org/10.1002/jcp.28053

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Yin J-Y, He F-Z, Huang M-S, Zhu T, Gao Y-F, Chen Y-X, Zhou D-B, Chen X, Sun L-Q, Zhang W, Zhou H-H, Liu Z-Q (2017) Long noncoding RNA SFTA1P promoted apoptosis and increased cisplatin chemosensitivity via regulating the hnRNP-U-GADD45A axis in lung squamous cell carcinoma. Oncotarget 8(57):97476–97489. https://doi.org/10.18632/oncotarget.22138

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sturtz LA, Melley J, Mamula K, Shriver CD, Ellsworth RE (2014) Outcome disparities in African American women with triple negative breast cancer: a comparison of epidemiological and molecular factors between African American and Caucasian women with triple negative breast cancer. BMC Cancer 14:62. https://doi.org/10.1186/1471-2407-14-62

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lynn H, Sun X, Ayshiev D, Siegler JH, Rizzo AN, Karnes JH, Gonzales Garay M, Wang T, Casanova N, Camp SM, Ellis NA, Garcia JGN (2018) Single nucleotide polymorphisms in the MYLKP1 pseudogene are associated with increased colon cancer risk in African Americans. PLoS One 13(8):e0200916. https://doi.org/10.1371/journal.pone.0200916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao K-M, Chen X-C, Zhang J-X, Wang Y, Yan W, You Y-P (2015) A pseudogene-signature in glioma predicts survival. J Exp Clin Cancer Res 34:23. https://doi.org/10.1186/s13046-015-0137-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang S, Yu J (2019) Long non-coding RNA transcribed from pseudogene PPIAP43 is associated with radiation sensitivity of small cell lung cancer cells. Oncol Lett 18(5):4583–4592. https://doi.org/10.3892/ol.2019.10806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hendrickson RC, Cicinnati VR, Albers A, Dworacki G, Gambotto A, Pagliano O, Tüting T, Mayordomo JI, Visus C, Appella E, Shabanowitz J, Hunt DF, DeLeo AB (2010) Identification of a 17beta-hydroxysteroid dehydrogenase type 12 pseudogene as the source of a highly restricted BALB/c Meth A tumor rejection peptide. Cancer Immunol Immunother 59(1):113–124. https://doi.org/10.1007/s00262-009-0730-7

    Article  CAS  PubMed  Google Scholar 

  43. Yu W, Qiao Y, Tang X, Ma L, Wang Y, Zhang X, Weng W, Pan Q, Yu Y, Sun F, Wang J (2014) Tumor suppressor long non-coding RNA, MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cell Signal 26(12):2961–2968. https://doi.org/10.1016/j.cellsig.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  44. Zheng J, Zhang H, Ma R, Liu H, Gao P (2019) Long non-coding RNA KRT19P3 suppresses proliferation and metastasis through COPS7A-mediated NF-κB pathway in gastric cancer. Oncogene 38(45):7073–7088. https://doi.org/10.1038/s41388-019-0934-z

    Article  CAS  PubMed  Google Scholar 

  45. Pisapia L, Terreri S, Barba P, Mastroianni M, Donnini M, Mercadante V, Palmieri A, Verze P, Mirone V, Altieri V, Califano G, Liguori GL, Strazzullo M, Cimmino A, Del Pozzo G (2020) Role of PA2G4P4 pseudogene in bladder cancer tumorigenesis. Biology (Basel) 9(4). https://doi.org/10.3390/biology9040066

  46. Zhou L-Y, Yin J-Y, Tang Q, Zhai L-L, Zhang T-J, Wang Y-X, Yang D-Q, Qian J, Lin J, Deng Z-Q (2015) High expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) is associated with poor prognosis in acute myeloid leukemia. Int J Clin Exp Pathol 8(12):16073–16080

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhai L-L, Zhou J, Zhang J, Tang X, Zhou L-Y, Yin J-Y, Vanessa M-ED, Peng W, Lin J, Deng Z-Q (2017) Down-regulation of pseudogene Vimentin 2p is associated with poor outcome in de novo acute myeloid leukemia. Cancer Biomark 18(3):305–312. https://doi.org/10.3233/cbm-160247

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Zou H, Shao Y-Y, Mei Y, Cheng Y, Hu D-L, Tan Z-R, Zhou H-H (2017) Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas. Oncotarget 8(63):106962–106975. https://doi.org/10.18632/oncotarget.22197

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Wang W, Li Y, Sun F, Lin J, Li L (2018) CKS1BP7, a pseudogene of CKS1B, is co-amplified with IGF1R in breast cancers. Pathol Oncol Res 24(2):223–229. https://doi.org/10.1007/s12253-017-0224-4

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Gao S, Chen H, Li L, He C, Fang L (2019) Long noncoding RNA PDIA3P promotes breast cancer development by regulating miR-183/ITGB1/FAK/PI3K/AKT/β-catenin signals. Int J Clin Exp Pathol 12(4):1284–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lou W, Ding B, Fan W (2019) High expression of pseudogene PTTG3P indicates a poor prognosis in human breast cancer. Mol Ther Oncolyt 14:15–26. https://doi.org/10.1016/j.omto.2019.03.006

    Article  CAS  Google Scholar 

  52. Chen X, Zhu H, Wu X, Xie X, Huang G, Xu X, Li S, Xing C (2016) Downregulated pseudogene CTNNAP1 promote tumor growth in human cancer by downregulating its cognate gene CTNNA1 expression. Oncotarget 7(34):55518–55528. https://doi.org/10.18632/oncotarget.10833

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen M, Fan M, Yang J, Lang J (2020) Identification of potential oncogenic long non-coding RNA set as a biomarker associated with colon cancer prognosis. J Environ Pathol Toxicol Oncol 39(1):39–49. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2020032351

    Article  PubMed  Google Scholar 

  54. Yari H, Jin L, Teng L, Wang Y, Wu Y, Liu GZ, Gao W, Liang J, Xi Y, Feng YC, Zhang C, Zhang YY, Tabatabaee H, La T, Yang RH, Wang FH, Yan XG, Farrelly M, Scott R, Liu T, Thorne RF, Guo ST, Zhang XD (2019) LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription. Nat Commun 10(1):5334. https://doi.org/10.1038/s41467-019-13313-z

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Liu Z-X, Wu Q-N, Lu Y-X, Wong C-W, Miao L, Wang Y, Wang Z, Jin Y, He M-M, Ren C, Wang D-S, Chen D-L, Pu H-Y, Feng L, Li B, Xie D, Zeng M-S, Huang P, Lin A, Lin D, Xu R-H, Ju H-Q (2020) Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun 11(1):1507. https://doi.org/10.1038/s41467-020-15112-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng F, Qiu B, Zang R, Song P, Gao S (2017) Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression. Oncotarget 8(17):29091–29100. https://doi.org/10.18632/oncotarget.16196

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pu W, Wang C, Chen S, Zhao D, Zhou Y, Ma Y, Wang Y, Li C, Huang Z, Jin L, Guo S, Wang J, Wang M (2017) Targeted bisulfite sequencing identified a panel of DNA methylation-based biomarkers for esophageal squamous cell carcinoma (ESCC). Clin Epigenetics 9:129. https://doi.org/10.1186/s13148-017-0430-7

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yuan H, Jiang H, Wang Y, Dong Y (2019) Increased expression of lncRNA FTH1P3 predicts a poor prognosis and promotes aggressive phenotypes of laryngeal squamous cell carcinoma. Biosci Rep 39(6). https://doi.org/10.1042/bsr20181644

  59. Chen J, Lou W, Ding B, Wang X (2019) Overexpressed pseudogenes, DUXAP8 and DUXAP9, promote growth of renal cell carcinoma and serve as unfavorable prognostic biomarkers. Aging (Albany NY) 11(15):5666–5688. https://doi.org/10.18632/aging.102152

    Article  CAS  Google Scholar 

  60. Wang Q-S, Shi L-L, Sun F, Zhang Y-F, Chen R-W, Yang S-L, Hu J-L (2019) High expression of ANXA2 pseudogene ANXA2P2 promotes an aggressive phenotype in hepatocellular carcinoma. Dis Markers 2019:9267046. https://doi.org/10.1155/2019/9267046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan Y, Sun C, Huang M, Liu Y, Qi F, Liu L, Wen J, Liu J, Xie K, Ma H, Hu Z, Shen H (2014) A genetic variant in pseudogene E2F3P1 contributes to prognosis of hepatocellular carcinoma. J Biomed Res 28(3):194–200. https://doi.org/10.7555/jbr.28.20140052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang L, Guo Z-Y, Zhang R, Xin B, Chen R, Zhao J, Wang T, Wen W-H, Jia L-T, Yao L-B, Yang A-G (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34(8):1773–1781. https://doi.org/10.1093/carcin/bgt139

    Article  CAS  PubMed  Google Scholar 

  63. Pan W, Li W, Zhao J, Huang Z, Zhao J, Chen S, Wang C, Xue Y, Huang F, Fang Q, Wang J, Brand D, Zheng SG (2019) lncRNA-PDPK2P promotes hepatocellular carcinoma progression through the PDK1/AKT/Caspase 3 pathway. Mol Oncol 13(10):2246–2258. https://doi.org/10.1002/1878-0261.12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qian Y-Y, Li K, Liu Q-Y, Liu Z-S (2017) Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma. Oncotarget 8(64):107859–107869. https://doi.org/10.18632/oncotarget.22305

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang M-Y, Chen D-P, Qi B, Li M-Y, Zhu Y-Y, Yin W-J, He L, Yu Y, Li Z-Y, Lin L, Yang F, Lin Z-R, Liu J-Q (2019) Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis 10(6):426. https://doi.org/10.1038/s41419-019-1666-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu T, Li D, He Y, Zhang F, Qiao M, Chen Y (2018) The expression level of CSDAP1 in lung cancer and its clinical significance. Oncol Lett 16(4):4361–4366. https://doi.org/10.3892/ol.2018.9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu Q, Wang J, Zhang Q, Wang F, Fang L, Song B, Xie C, Liu J (2020) Methylation-driven genes PMPCAP1, SOWAHC and ZNF454 as potential prognostic biomarkers in lung squamous cell carcinoma. Mol Med Rep 21(3):1285–1295. https://doi.org/10.3892/mmr.2020.10933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yuan K, Gao Z-J, Yuan W-D, Yuan J-Q, Wang Y (2018) High expression of SLC6A10P contributes to poor prognosis in lung adenocarcinoma. Int J Clin Exp Pathol 11(2):720–726

    PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Li Y, Han L, Zhang P, Sun S (2019) SUMO1P3 is associated clinical progression and facilitates cell migration and invasion through regulating miR-136 in non-small cell lung cancer. Biomed Pharmacother 113:108686. https://doi.org/10.1016/j.biopha.2019.108686

    Article  CAS  PubMed  Google Scholar 

  70. Lian Y, Yang J, Lian Y, Xiao C, Hu X, Xu H (2018) DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun (Lond) 38(1):64. https://doi.org/10.1186/s40880-018-0333-9

    Article  Google Scholar 

  71. Lu W, Zhou D, Glusman G, Utleg AG, White JT, Nelson PS, Vasicek TJ, Hood L, Lin B (2006) KLK31P is a novel androgen regulated and transcribed pseudogene of kallikreins that is expressed at lower levels in prostate cancer cells than in normal prostate cells. Prostate 66(9):936–944. https://doi.org/10.1002/pros.20382

    Article  CAS  PubMed  Google Scholar 

  72. Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Léopold V, Sjoberg M, Keane TM, Verma A, Ala U, Tay Y, Wu D, Seitzer N, Velasco-Herrera MDC, Bothmer A, Fung J, Langellotto F, Rodig SJ, Elemento O, Shipp MA, Adams DJ, Chiarle R, Pandolfi PP (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161(2):319–332. https://doi.org/10.1016/j.cell.2015.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu Y, Yu X, Wei C, Nie F, Huang M, Sun M (2018) Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and β-catenin in gastric cancer. J Exp Clin Cancer Res 37(1):13. https://doi.org/10.1186/s13046-018-0684-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li L, Feng R, Fei S, Cao J, Zhu Q, Ji G, Zhou J (2019) NANOGP8 expression regulates gastric cancer cell progression by transactivating DBC1 in gastric cancer MKN-45 cells. Oncol Lett 17(1):555–563. https://doi.org/10.3892/ol.2018.9595

    Article  CAS  PubMed  Google Scholar 

  75. Hayashi H, Arao T, Togashi Y, Kato H, Fujita Y, De Velasco MA, Kimura H, Matsumoto K, Tanaka K, Okamoto I, Ito A, Yamada Y, Nakagawa K, Nishio K (2015) The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene 34(2):199–208. https://doi.org/10.1038/onc.2013.547

    Article  CAS  PubMed  Google Scholar 

  76. Weng W, Ni S, Wang Y, Xu M, Zhang Q, Yang Y, Wu Y, Xu Q, Qi P, Tan C, Huang D, Wei P, Huang Z, Ma Y, Zhang W, Sheng W, Du X (2017) PTTG3P promotes gastric tumour cell proliferation and invasion and is an indicator of poor prognosis. J Cell Mol Med 21(12):3360–3371. https://doi.org/10.1111/jcmm.13239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mei D, Song H, Wang K, Lou Y, Sun W, Liu Z, Ding X, Guo J (2013) Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med Oncol 30(4):709. https://doi.org/10.1007/s12032-013-0709-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Sisu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sisu, C. (2021). Pseudogenes as Biomarkers and Therapeutic Targets in Human Cancers. In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 2324. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1503-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1503-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1502-7

  • Online ISBN: 978-1-0716-1503-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics