Skip to main content

Single-Cardiomyocyte RNA Sequencing to Dissect the Molecular Pathophysiology of the Heart

  • Protocol
  • First Online:
Pluripotent Stem-Cell Derived Cardiomyocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2320))

Abstract

Heart failure is caused by a complicated pathogenic process and has a poor prognosis. Quality of life is often impaired due to repeated hospitalization. Integrative analysis of the morphological, physiological, and molecular profiles of cardiomyocytes, which are responsible mainly for heart contraction, may lead to a deeper understanding of the pathogenesis of heart failure. However, unlike other types of cells, cardiomyocytes are relatively large, vulnerable to stress, and difficult to use for single-cell analysis. With some ingenuity, we have established a single-cardiomyocyte analysis pipeline. Here, we describe the procedure for single-cell RNA sequencing of adult mouse cardiomyocytes from isolation to analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181

    Article  CAS  Google Scholar 

  2. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  4. Chen S, Zhou Y, Chen Y, Gu Y (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  Google Scholar 

  5. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  6. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  Google Scholar 

  7. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177:1888–1902

    Article  CAS  Google Scholar 

  8. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979–982. http://cole-trapnell-lab.github.io/monocle-release/docs/

    Article  CAS  Google Scholar 

  9. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (to M.K.), Grant-in-Aid for Scientific Research (B) (to S.N.), Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (to I.K.), and grants from the Japan Foundation for Applied Enzymology (to S.N.), the SENSHIN Medical Research Foundation (to S.N.), the KANAE Foundation for the Promotion of Medical Science (to S.N.), MSD Life Science Foundation (to S.N.), The Tokyo Biomedical Research Foundation (to S.N.), Astellas Foundation for Research on Metabolic Disorders (to S.N.), The Novartis Foundation (Japan) for the Promotion of Science (to S.N.), the Japanese Circulation Society (to S.N.), Takeda Science Foundation (to S.N.), and AMED (JP20gm0810013, JP20ek0109440, JP20ek0109487, JP20ek0109406, JP20km0405209, JP20bm0704026, JP20gm6210010, JP20ek0210141, JP20ek0210152, JP19bm0804010) (to S.N. and I.K.). The authors report that they have no relationships relevant to the contents of this chapter to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Aburatani or Issei Komuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Katoh, M., Nomura, S., Yamada, S., Aburatani, H., Komuro, I. (2021). Single-Cardiomyocyte RNA Sequencing to Dissect the Molecular Pathophysiology of the Heart. In: Yoshida, Y. (eds) Pluripotent Stem-Cell Derived Cardiomyocytes. Methods in Molecular Biology, vol 2320. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1484-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1484-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1483-9

  • Online ISBN: 978-1-0716-1484-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics