Skip to main content

Analysis of Lymphatic Vessel Formation by Whole-Mount Immunofluorescence Staining

  • Protocol
  • First Online:
Cardiovascular Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2319))

Abstract

Pathological alterations of lymphatic structure and function interfere with lymph transport, resulting in a wide range of clinical disorders that include edema, tissue inflammation, and metabolic syndromes. Mesentery contains abundant lymphatic vessels and plays an important role in transporting absorbed lipid from the intestine. In this manuscript, we describe a whole-mount staining method on isolated mouse mesentery with VEGFR3, Prox1, and Lyve1 antibodies to visualize the morphology of lymphatic vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Semo J, Nicenboim J, Yaniv K (2016) Development of the lymphatic system: new questions and paradigms. Development 143(6):924–935

    Article  CAS  Google Scholar 

  2. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4(1):35–45

    Article  CAS  Google Scholar 

  3. Zheng W, Aspelund A, Alitalo K (2014) Lymphangiogenic factors, mechanisms, and applications. J Clin Invest 124(3):878–887

    Article  CAS  Google Scholar 

  4. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953

    Article  CAS  Google Scholar 

  5. Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM et al (2014) The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell 31(6):690–706

    Article  CAS  Google Scholar 

  6. Sabine A, Agalarov Y, Maby-El Hajjami H, Jaquet M, Hagerling R, Pollmann C et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22(2):430–445

    Article  CAS  Google Scholar 

  7. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778

    Article  CAS  Google Scholar 

  8. Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulos GD et al (2007) Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 27(2):595–604

    Article  CAS  Google Scholar 

  9. Luong MX, Tam J, Lin Q, Hagendoorn J, Moore KJ, Padera TP et al (2009) Lack of lymphatic vessel phenotype in LYVE-1/CD44 double knockout mice. J Cell Physiol 219(2):430–437

    Article  CAS  Google Scholar 

  10. Zhang Y, Ulvmar MH, Stanczuk L, Martinez-Corral I, Frye M, Alitalo K et al (2018) Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nat Commun 9(1):1296

    Article  Google Scholar 

  11. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V et al (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122(12):3829–3837

    Article  CAS  Google Scholar 

  12. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949

    Article  CAS  Google Scholar 

  13. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N et al (2003) T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22(14):3546–3556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by American Heart Association Transformational Project Award (19TPA34900011) to Xu Peng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, J., Dong, Y., Muthuchamy, M., Zawieja, D.C., Peng, X. (2021). Analysis of Lymphatic Vessel Formation by Whole-Mount Immunofluorescence Staining. In: Peng, X., Zimmer, W.E. (eds) Cardiovascular Development. Methods in Molecular Biology, vol 2319. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1480-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1480-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1479-2

  • Online ISBN: 978-1-0716-1480-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics