Skip to main content

Gene Switching and Essentiality Testing

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

The identification of essential genes is of major importance to mycobacterial research, and a number of essential genes have been identified in mycobacteria, however confirming essentiality is not straightforward, as deletion of essential genes results in a lethal phenotype. In this chapter, protocols are described which can be used to confirm gene essentiality using gene switching, following the construction of a strain carrying its only functional copy on an integrated plasmid (Δ′int). Since deletion mutants cannot be created for essential genes, a second gene copy is introduced via an integrating vector, which allows the chromosomal gene copy to be deleted. The integrated vector can then be replaced using the gene switching method, where no transformants are obtained, essentiality is confirmed. This technique can also be used to confirm functionality of gene homologs and to easily identify essential operon members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrt S, Rhee K, Schnappinger D (2015) Mycobacterial genes essential for the pathogen's survival in the host. Immunol Rev 264:319–326

    Article  CAS  Google Scholar 

  2. Stephan J, Stemmer V, Niederweis M (2004) Consecutive gene deletions in Mycobacterium smegmatis using the yeast FLP recombinase. Gene 343:181–190

    Google Scholar 

  3. Pavelka MS Jr, Jacobs WR Jr (1999) Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guérin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181:4780–4789

    Google Scholar 

  4. Parish T, Stoker NG (2000) Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975

    Article  CAS  Google Scholar 

  5. Knipfer N, Seth A, Shrader TE (1997) Unmarked gene integration into the chromosome of Mycobacterium smegmatis via precise replacement of the pyrF gene. Plasmid 37:129–140

    Google Scholar 

  6. Hinds J, Mahenthiralingam E, Kempsell KE et al (1999) Enhanced gene replacement in mycobacteria. Microbiology 145:519–527

    Article  CAS  Google Scholar 

  7. Triccas JA, Parish T, Britton WJ et al (1998) An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167:151–156

    Google Scholar 

  8. Carroll P, Muttucumaru DGN, Parish T (2005) Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Environ Microbiol 71:3077–3084

    Google Scholar 

  9. De Smet KAL, Kempsell KE, Gallagher A et al (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145:3177–3184

    Article  Google Scholar 

  10. Brown AC, Parish T (2006) Instability of the acetamide-inducible expression vector pJAM2 in Mycobacterium tuberculosis. Plasmid 55:81–86

    Article  CAS  Google Scholar 

  11. Al-Zarouni M, Dale JW (2002) Expression of foreign genes in Mycobacterium bovis BCG strains using different promoters reveals instability of the hsp60 promoter for expression of foreign genes in Mycobacterium bovis BCG strains. Tuberculosis 82:283–291

    Google Scholar 

  12. Chawla M, Das Gupta SK (1999) Transposition-induced structural instability of Escherichia coli-mycobacteria shuttle vectors. Plasmid 41:135–140

    Article  CAS  Google Scholar 

  13. Parish T, Lewis J, Stoker NG (2001) Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis 81:359–364

    Article  CAS  Google Scholar 

  14. Parish T, Stoker NG (2000) glnE is an essential gene in Mycobacterium tuberculosis. J Bacteriol 182:5715–5720

    Google Scholar 

  15. Parish T, Stoker NG (2002) The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 148:3069–3077

    Article  CAS  Google Scholar 

  16. Pashley CA, Parish T (2003) Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett 229:211–215

    Article  CAS  Google Scholar 

  17. Cole ST (1999) Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett 452:7–10

    Article  CAS  Google Scholar 

  18. Camus J-C, Pryor MJ, Medigue C et al (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148:2967–2973

    Article  CAS  Google Scholar 

  19. Strong M, Mallick P, Pellegrini M et al (2003) Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach. Genome Biol 4:R59

    Article  Google Scholar 

  20. Parish T, Roberts G, Laval F et al (2007) Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG, but not Escherichia coli fabG. J Bacteriol 189(10):3721–3728

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Claire Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, A.C. (2021). Gene Switching and Essentiality Testing. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics