Skip to main content

Mass Spectrometric Analysis of Bioactive Sphingolipids in Fungi

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

Abstract

As biomolecules, sphingolipids represent a broad spectrum of structures ranging from simple long chain bases to complex glycosphingolipids. While several different mass spectrometry based approaches have been proven to be useful in qualitative and quantitative analysis of sphingolipids, we find that electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the multiple-reaction monitoring (MRM) mode using a triple quadrupole instrument, coupled to high-performance liquid chromatography (HPLC), is the most suitable approach for the analysis. In this chapter, we describe the method in a step-by-step manner towards the targeted analysis of sphingolipids in fungi. With optimized HPLC separation and instrument settings, this MRM approach affords detection of many sphingolipid species simultaneously with good sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C (2014) Synthesis and biological properties of fungal glucosylceramide. PLoS Pathog 10(1):e1003832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jenkins GM, Richards A, Wahl T, Mao C, Obeid L, Hannun Y (1997) Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem 272(51):32566–32572

    Article  CAS  PubMed  Google Scholar 

  3. Zanolari B, Friant S, Funato K, Sutterlin C, Stevenson BJ, Riezman H (2000) Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 19:2824–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luberto C, Toffaletti DL, Wills EA et al (2001) Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev 15(2):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levery SB, Momany M, Lindsey R et al (2002) Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525(1–3):59–64

    Article  CAS  PubMed  Google Scholar 

  6. Dickson RC, Lester RL (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583(1):13–25

    Article  CAS  PubMed  Google Scholar 

  7. Obeid LM, Okamoto Y, Mao C (2002) Yeast sphingolipids: metabolism and biology. Biochim Biophys Acta 1585(2–3):163–171

    Article  CAS  PubMed  Google Scholar 

  8. Cheng J, Park TS, Chio LC, Fischl AS, Ye XS (2003) Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans. Mol Cell Biol 23(1):163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rittershaus PC, Kechichian TB, Allegood JC et al (2006) Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116(6):1651–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oura T, Kajiwara S (2010) Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation. Microbiology 156(Pt 4):1234–1243

    Article  CAS  PubMed  Google Scholar 

  11. Epstein S, Castillon GA, Qin Y, Riezman H (2012) An essential function of sphingolipids in yeast cell division. Mol Microbiol 84(6):1018–1032

    Article  CAS  PubMed  Google Scholar 

  12. Marquês JT, Cordeiro AM, Viana AS, Herrmann A, Marinho HS, de Almeida RF (2015) Formation and properties of membrane-ordered domains by phytoceramide: role of sphingoid base hydroxylation. Langmuir 31(34):9410–9421

    Article  PubMed  CAS  Google Scholar 

  13. Munshi MA, Gardin JM, Singh A et al (2018) The role of ceramide synthases in the pathogenicity of Cryptococcus neoformans. Cell Rep 22(6):1392–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren J, Hannun YA (2016) Metabolism and roles of sphingolipids in yeast Saccharomyces cerevisiae. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham

    Google Scholar 

  15. Singh A, Del Poeta M (2016) Sphingolipidomics: an important mechanistic tool for studying fungal pathogens. Front Microbiol 7:501

    PubMed  PubMed Central  Google Scholar 

  16. Singh A, MacKenzie A, Girnun G, Del Poeta M (2017) Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 58(10):2017–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36(2):207–224

    Article  CAS  PubMed  Google Scholar 

  18. Merrill AH Jr, Stokes TH, Momin A et al (2009) Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 50(Suppl):S97–S102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2009) Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579:443–467

    Article  CAS  PubMed  Google Scholar 

  20. Hammad SM, Pierce JS, Soodavar F et al (2010) Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res 51(10):3074–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren J, Snider J, Airola MV et al (2018) Quantification of 3-ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast Saccharomyces cerevisiae. J Lipid Res 59(1):162–170

    Article  CAS  PubMed  Google Scholar 

  22. Snider JM, Snider AJ, Obeid LM, Luberto C, Hannun YA (2018) Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 59(6):1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rana NA, Singh A, Del Poeta M, Hannun YA (2015) Qualitative and quantitative measurements of sphingolipids by mass spectrometry. In: Hannun Y, Luberto C, Mao C, Obeid L (eds) Bioactive sphingolipids in cancer biology and therapy. Springer, Cham

    Google Scholar 

  24. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    Article  CAS  PubMed  Google Scholar 

  25. Ejsing CS, Sampaio JL, Surendranath V et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  27. Mandala SM, Thornton RA, Frommer BR et al (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48(5):349–356

    Article  CAS  Google Scholar 

  28. Singh A, Wang H, Silva LC et al (2012) Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cell Microbiol 14(4):500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brockerhoff H (1963) Breakdown of phospholipids in mild alkaline hydrolysis. J Lipid Res 4:96–99

    Article  CAS  PubMed  Google Scholar 

  30. Basit A, Piomelli D, Armirotti A (2015) Rapid evaluation of 25 key sphingolipids and phosphosphingolipids in human plasma by LC-MS/MS. Anal Bioanal Chem 407(17):5189–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Metherel AH, Hogg RC, Buzikievich LM, Stark KD (2013) Butylated hydroxytoluene can protect polyunsaturated fatty acids in dried blood spots from degradation for up to 8 weeks at room temperature. Lipids Health Dis 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pal S, Medatwal N, Kumar S et al (2019) A localized chimeric hydrogel therapy combats tumor progression through alteration of sphingolipid metabolism. ACS Cent Sci 5(10):1648–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hejazi L, Wong JW, Cheng D et al (2011) Mass and relative elution time profiling: two-dimensional analysis of sphingolipids in Alzheimer’s disease brains. Biochem J 438(1):165–175

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Wang C, Han X (2017) Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry—what, how and why? Mass Spectrom Rev 36(6):693–714

    Article  CAS  PubMed  Google Scholar 

  35. Shah AH, Singh A, Dhamgaye S et al (2014) Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem J 460(2):223–235

    Article  CAS  PubMed  Google Scholar 

  36. Mahto KK, Singh A, Khandelwal NK, Bhardwaj N, Jha J, Prasad R (2014) An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans. PLoS One 9(11):e113664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Khandelwal NK, Chauhan N, Sarkar P et al (2018) Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J Biol Chem 293(2):412–432

    Article  CAS  PubMed  Google Scholar 

  38. Rollin-Pinheiro R, Rochetti VP, Xisto MIDDS et al (2019) Sphingolipid biosynthetic pathway is crucial for growth, biofilm formation and membrane integrity of Scedosporium boydii. Future Med Chem 11(22):2905–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shu M, Ellepola AN, Samaranayake LP (2001) Effects of two different growth media on the postantifungal effect induced by polyenes on Candida species. J Clin Microbiol 39(7):2732–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanson BA, Lester RL (1980) The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J Lipid Res 21(3):309–315

    Article  CAS  PubMed  Google Scholar 

  41. Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL (1997) Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272(47):29620–29625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to A.S. from ICMR (No. 52/08/2019-BIO/BMS), DST-PURSE program (SR/PURSE Phase 2/29(C)), UP Higher Education (No. 10/2021/281/-4-2021-04(2)/2021), DBT (BT/PR38505/MED/29/1513/2020) and the University of Lucknow, and NIH grants AI136934, AI116420 and AI125770, by Merit Review Grant I01BX002924 from the Veterans Affairs Program to M.D.P., who is Burroughs Welcome Investigator in Infectious Diseases. M.D.P. is a Co-Founder and Chief Scientific Officer (CSO) of MicroRid Technologies Incorporated. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, A., Del Poeta, M. (2021). Mass Spectrometric Analysis of Bioactive Sphingolipids in Fungi. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics