Skip to main content

Protein and Small Molecule Structure Determination by the Cryo-EM Method MicroED

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2305))

Abstract

Microcrystal Electron Diffraction (MicroED) is the newest cryo-electron microscopy (cryo-EM) method, with over 70 protein, peptide, and several small organic molecule structures already determined. In MicroED, micro- or nanocrystalline samples in solution are deposited on electron microscopy grids and examined in a cryo-electron microscope, ideally under cryogenic conditions. Continuous rotation diffraction data are collected and then processed using conventional X-ray crystallography programs. The protocol outlined here details how to obtain and identify the nanocrystals, how to set up the microscope for screening and for MicroED data collection, and how to collect and process data to complete high-resolution structures. For well-behaving crystals with high-resolution diffraction in cryo-EM, the entire process can be achieved in less than an hour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koning RI, Koster AJ, Sharp TH (2018) Advances in cryo-electron tomography for biology and medicine. Ann Anat 217:82–96

    Article  PubMed  Google Scholar 

  2. Glaeser RM (2019) How good can single-particle Cryo-EM become? What remains before it approaches its physical limits? Annu Rev Biophys 48:45–46

    Article  CAS  PubMed  Google Scholar 

  3. Fromm SA, Sachse C (2016) Chapter twelve - Cryo-EM structure determination using segmented helical image reconstruction. In: Crowther RA (ed) The resolution revolution: recent advances in cryoEM, vol 579. Academic Press, pp 307–328

    Google Scholar 

  4. Righetto RD, Biyani N, Kowal J et al (2019) Retrieving high-resolution information from disordered 2D crystals by single-particle cryo-EM. Nat Commun 10:1722

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nannenga BL, Gonen T (2109) The cryo-EM method microcrystal electron diffraction (MicroED). Nat Methods 16:369–379

    Article  Google Scholar 

  6. Iancu CV, Tivol WF, Schooler JB et al (2006) Electron cryotomography sample preparation using the Vitrobot. Nat Protoc 1:2813–2819

    Article  CAS  PubMed  Google Scholar 

  7. Liu S, Gonen T (2018) MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter. Commun. Biol 1:1–6

    Google Scholar 

  8. De La Cruz MJ, Hattne J, Shi D et al (2107) Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat Methods 14:399–402

    Article  Google Scholar 

  9. Jones CG, Martynowycz MW, Hattne J et al (2018) The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent Sci 4:1587–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ting CP, Funk MA, Halaby SL et al (2019) Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 365:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chapman HN (2019) X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu Rev Biochem 88:35–58

    Article  CAS  PubMed  Google Scholar 

  12. Nannenga BL, Shi D, Leslie AG, Gonen T (2014) High-resolution structure determination by continuous-rotation data collection in MicroED. Nat Methods 11:927–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Battye TG, Kontogiannis L, Johnson O et al (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leslie AG, Powell HR (2007) Processing diffraction data with mosflm BT. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography. Springer Netherlands, pp 41–51

    Google Scholar 

  15. Kabsch W (2010) XDS. Acta Crystallogr Sect D 66:125–132

    Article  CAS  Google Scholar 

  16. Otwinowski Z, Minor WB (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Macromolecular crystallography part a, vol 276. Academic Press, pp 307–326

    Google Scholar 

  17. Waterman DG, Winter G, Parkhurst JM et al (2013) The DIALS framework for integration software. CCP4 Newsl PROTEIN Crystallogr 49:16–19

    Google Scholar 

  18. Brünger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D 54:905–921

    Article  Google Scholar 

  19. Brunger AT, Adams PD, Clore GM et al (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  CAS  PubMed  Google Scholar 

  20. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr Sect D 66:213–221

    Article  CAS  Google Scholar 

  21. Blanc E, Roversi P, Vonrhein C et al (2004) Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr Sect D 60:2210–2221

    Article  CAS  Google Scholar 

  22. Sheldrick GM (2010) Experimental phasing with SHELXC: combining chain tracing with density modification. Acta Crystallogr Sect D 66:479–485

    Article  CAS  Google Scholar 

  23. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nannenga BL, Gonen T (2014) Protein structure determination by MicroED. Curr Opin Struct Biol 27:24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nanneng BL, Shi D, Hattne J et al (2014) Structure of catalase determined by MicroED. elife 3:e03600

    Article  Google Scholar 

  26. Purdy MD, Shi D, Chrustowicz J et al (2018) MicroED structures of HIV-1 gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc Natl Acad Sci U S A 115:13258–13263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez JA, Ivanova MI, Sawaya MR et al (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawaya MR, Rodriguez J, Cascio D et al (2016) Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proc Natl Acad Sci U S A 113:11232–11236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vergara S, Lukes DA, Martynowycz MW et al (2017) MicroED structure of au 146 (p-MBA) 57 at subatomic resolution reveals a twinned FCC cluster. J Phys Chem Lett 8:5523–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahamid J, Pfeffer S, Schaffer M et al (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:969–972

    Article  CAS  PubMed  Google Scholar 

  31. Kasinath V, Faini M, Poepsel S et al (2018) Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science 359:940–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. von der Ecken J, Müller M, Lehman W et al (2015) Structure of the F-actin–tropomyosin complex. Nature 519:114–117

    Article  PubMed  Google Scholar 

  33. Gonen T, Cheng Y, Sliz P et al (2005) Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu H, Lebrette H, Clabbers MT et al (2019) Solving a new R2lox protein structure by microcrystal electron diffraction. Sci Adv 5:eaax4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of the Gonen laboratory, current and past and all collaborators who worked with us on MicroED applications. This work was supported by the National Institutes of Health P41GM136508. The Gonen laboratory is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Gonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Danelius, E., Gonen, T. (2021). Protein and Small Molecule Structure Determination by the Cryo-EM Method MicroED. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics