Skip to main content

Advances in Confocal Microscopy and Selected Applications

  • Protocol
  • First Online:
Confocal Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2304))

Abstract

Over the last 30 years, confocal microscopy has emerged as a primary tool for biological investigation across many disciplines. The simplicity of use and widespread accessibility of confocal microscopy ensure that it will have a prominent place in biological imaging for many years to come, even with the recent advances in light sheet and field synthesis microscopy. Since these more advanced technologies still require significant expertise to effectively implement and carry through to analysis, confocal microscopy-based approaches still remain the easiest way for biologists with minimal imaging experience to address fundamental questions about how their systems are arranged through space and time. In this review, we discuss a number of advanced applications of confocal microscopy for probing the spatiotemporal dynamics of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jonkman J, Brown CM, Cole RW (2014) Quantitative confocal microscopy: beyond a pretty picture. Methods Cell Biol 123:113–134

    Article  PubMed  Google Scholar 

  3. Penzkofer A, Lu Y (1986) Fluorescence quenching of rhodamine 6G in methanol at high concentration. Chem Phys 103:399–405

    Article  CAS  Google Scholar 

  4. Kneen M, Farinas J, Li Y et al (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frigault MM, Lacoste J, Swift JL et al (2009) Live-cell microscopy – tips and tools. J Cell Sci 122:753–767

    Article  CAS  PubMed  Google Scholar 

  6. Dailey ME, Marrs GS, Kurpius D (2011) Maintaining live cells and tissue slices in the imaging setup. Cold Spring Harb Protoc 2011. pdb.top105

    Google Scholar 

  7. Burry R (2010) Immunocytochemistry: a practical guide for biomedical research. Springer, New York

    Book  Google Scholar 

  8. Schnell U, Dijk F, Sjollema KA et al (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods 9:152–158

    Article  CAS  PubMed  Google Scholar 

  9. Syrbu SI, Cohen MB (2011) Methods in molecular biology. Methods Mol Biol 717:101–110

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez EA, Campbell RE, Lin JY et al (2016) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vera M, Tutucci E, Singer RH (2019) Methods in molecular biology. Methods Mol Biol 2038:3–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trachman RJ, Truong L, Ferré-D’Amaré AR (2017) Structural principles of fluorescent RNA aptamers. Trends Pharmacol Sci 38:928–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorn K (2017) Genetically encoded fluorescent tags. Mol Biol Cell 28:848–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costantini LM, Snapp EL (2013) Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol 32:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16:277–278

    Article  CAS  PubMed  Google Scholar 

  16. Bukhari H, Müller T (2019) Endogenous fluorescence tagging by CRISPR. Trends Cell Biol 29:912–928

    Article  CAS  PubMed  Google Scholar 

  17. Ingram JR, Schmidt FI, Ploegh HL (2018) Exploiting nanobodies’ singular traits. Annu Rev Immunol 36:695–715

    Article  CAS  PubMed  Google Scholar 

  18. Asano SM, Gao R, Wassie AT et al (2018) Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr Protoc Cell Biol 80:e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lavis LD (2017) Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines. Annu Rev Biochem 86:825–843

    Article  CAS  PubMed  Google Scholar 

  20. Grimm JB, English BP, Chen J et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250

    Google Scholar 

  21. Grimm JB, Klein T, Kopek BG et al (2015) Synthesis of a far-red photoactivatable silicon-containing rhodamine for super-resolution microscopy. Angew Chem Int Ed Engl 55:1723–1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Deo C, Sheu S-H, Seo J et al (2019) Isomeric tuning yields bright and targetable red Ca2+ indicators. J Am Chem Soc 141:13734–13738

    Article  CAS  PubMed  Google Scholar 

  23. Deo C, Lavis LD (2018) Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 50:101–108

    Article  CAS  PubMed  Google Scholar 

  24. Martineau M, Somasundaram A, Grimm JB et al (2017) Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat Commun 8:1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Deguchi T, Bianchini P, Palazzolo G, et al (2020) Volumetric Lissajous confocal microscopy with tunable spatiotemporal resolution. Biomed Opt Express. 11(11):6293-6310

    Google Scholar 

  26. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Demmerle J, Wegel E, Schermelleh L et al (2015) Assessing resolution in super-resolution imaging. Methods 88:3–10

    Article  CAS  PubMed  Google Scholar 

  29. Li D, Shao L, Chen B-C et al (2015) ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349:aab3500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Biggs DSC (2010) 3D deconvolution microscopy. Curr Protoc Cytom 52:12.19.1–12.19.20

    Google Scholar 

  31. Biggs DSC (2010) A practical guide to deconvolution of fluorescence microscope imagery. Microsc Today 18:10–14

    Article  Google Scholar 

  32. Sigal YM, Zhou R, Zhuang X (2018) Visualizing and discovering cellular structures with super-resolution microscopy. Science 361:880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schermelleh L, Ferrand A, Huser T et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    Article  CAS  PubMed  Google Scholar 

  34. Ji N, Shroff H, Zhong H et al (2008) Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol 18:605–616

    Article  CAS  PubMed  Google Scholar 

  35. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    Article  CAS  PubMed  Google Scholar 

  36. Sheppard CJR (1988) Aberrations in high aperture conventional and confocal imaging systems. Appl Opt 27:4782

    Article  CAS  PubMed  Google Scholar 

  37. Sheppard CJR, Mehta SB, Heintzmann R (2013) Superresolution by image scanning microscopy using pixel reassignment. Opt Lett 38:2889–2892

    Article  PubMed  Google Scholar 

  38. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma R, Singh M, Sharma R (2019) Recent advances in STED and RESOLFT super-resolution imaging techniques. Spectrochimica Acta A Mol Biomol Spectrosc 231:117715

    Article  CAS  Google Scholar 

  40. Hofmann M, Eggeling C, Jakobs S et al (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–17569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neher R, Neher E (2004) Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J Microsc 213:46–62

    Article  CAS  PubMed  Google Scholar 

  42. Valm AM, Oldenbourg R, Borisy GG (2016) Multiplexed spectral imaging of 120 different fluorescent labels. PLoS One 11:e0158495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cohen S, Valm AM, Lippincott-Schwartz J (2018) Multispectral live-cell imaging. Curr Protoc Cell Biol 79:e46

    Article  PubMed  PubMed Central  Google Scholar 

  44. Valm AM, Cohen S, Legant WR et al (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verveer PJ, Rocks O, Harpur AG et al (2006) Imaging protein interactions by FRET microscopy: FLIM measurements. CSH Protoc 2006:pdb.prot4599-pdb.prot4599

    Google Scholar 

  46. Bastiaens PIH, Squire A, Bastiaens PIH et al (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52

    Article  CAS  PubMed  Google Scholar 

  47. Aaron JS, Taylor AB, Chew T-L (2018) Image co-localization – co-occurrence versus correlation. J Cell Sci 131:jcs211847

    Article  PubMed  CAS  Google Scholar 

  48. Aaron J, Wait E, DeSantis M et al (2019) Practical considerations in particle and object tracking and analysis. Curr Protoc Cell Biol 83:e88

    Article  PubMed  Google Scholar 

  49. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  50. Geurts P, Irrthum A, Wehenkel L (2009) Supervised learning with decision tree-based methods in computational and systems biology. Mol Biosyst 5:1593

    Article  CAS  PubMed  Google Scholar 

  51. Berg S, Kutra D, Kroeger T et al (2019) Ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16:1226–1232

    Article  CAS  PubMed  Google Scholar 

  52. McQuin C, Goodman A, Chernyshev V et al (2018) CellProfiler 3.0: next-generation image processing for biology. PLoS Biol 16:e2005970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Weigert M, Schmidt U, Boothe T et al (2018) Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15:1090–1097

    Article  CAS  PubMed  Google Scholar 

  54. Ouyang W, Mueller F, Hjelmare M et al (2019) ImJoy: an open-source computational platform for the deep learning era. Nat Methods 16:1199–1200

    Article  CAS  PubMed  Google Scholar 

  55. Lippincott-Schwartz J, Snapp EL, Phair RD (2018) The development and enhancement of FRAP as a key tool for investigating protein dynamics. Biophys J 115:1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Santos CDL, Chang C-W, Mycek M-A et al (2015) FRAP, FLIM, and FRET: detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol Reprod Dev 82:587–604

    Article  CAS  Google Scholar 

  57. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC (2012) Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  59. Dana H, Sun Y, Mohar B et al (2019) High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods 16:649–657

    Article  CAS  PubMed  Google Scholar 

  60. Demuro A, Parker I (2005) Optical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution. J Biomed Opt 10:011002

    Article  CAS  Google Scholar 

  61. Sánchez SA, Gratton E (2005) Lipid−protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc Chem Res 38:469–477

    Article  PubMed  CAS  Google Scholar 

  62. Sezgin E, Schneider F, Galiani S et al (2019) Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS. Nat Protoc 14:1054–1083

    CAS  PubMed  Google Scholar 

  63. Barbotin A, Galiani S, Urbančič I et al (2019) Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells. Opt Express 27:23378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Erin O’Shea and Jennifer Lippincott-Schwartz for support and funding, and members of both labs for comments and suggestions regarding the chapter. We are especially thankful for Andy Moore and Carolyn Ott for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Obara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply and Springer Nature US

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reilly, W.M., Obara, C.J. (2021). Advances in Confocal Microscopy and Selected Applications. In: Brzostowski, J., Sohn, H. (eds) Confocal Microscopy. Methods in Molecular Biology, vol 2304. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1402-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1402-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1401-3

  • Online ISBN: 978-1-0716-1402-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics