Skip to main content

Contribution of Cyclic Voltammetry and Electrochemical Impedance Spectroscopy in Deciphering the Electron Transport System in Biofilm

  • Protocol
  • First Online:
Analytical Methodologies for Biofilm Research

Abstract

Electrochemistry in microbiology depicts an assortment of rising advancements that utilize interaction between microscopic organisms and electrodes, creating electrical energy, waste and wastewater treatment, bioremediation, and many others. Focus in every application is the capacity of microbial impetus to connect with electron acceptors and donors and metabolic properties that empower the blend of electron transport and carbon metabolism. This study looks at the electrochemical procedures used to examine extracellular electron move in the electrochemically dynamic biofilms that are utilized in microbial power devices and other bioelectrochemical frameworks. Electrochemically dynamic biofilms are characterized as biofilms that move electrons with conductive surface terminals. The most effective method for these electrochemically dynamic biofilms in bioelectrical framework is discussed in this study. Cyclic voltammetric methods are the methods to contemplate extracellular electron which moves in bioelectrochemical frameworks. This method is used for the examination of the extracellular electron moving in the electroactive microbial biofilms. Furthermore the coupling of cyclic voltammetry with electrochemical impedance spectroscopic techniques will give a major breakthrough in the deciphering of electron transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marsili E et al (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00177-08

  2. Strycharz SM et al (2011) Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400. Energy Environ Sci. https://doi.org/10.1039/c0ee00260g

  3. Kang J et al (2012) Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2011.10.002

  4. Wu B et al (2014) Anode-biofilm electron transfer behavior and wastewater treatment under different operational modes of bioelectrochemical system. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.01.088

  5. Heinze J (1984) Cyclic voltammetry – “electrochemical spectroscopy”. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.198408313

  6. Compton RG, Banks CE (2007) Understanding voltammetry. Understand Volt. https://doi.org/10.1142/6430

  7. Heyrovský J (1940) J Chem Educ. https://doi.org/10.1021/ed017p101

  8. Koryta J (1991) Jaroslav Heyrovský and polarography (on the 100th anniversary of his birth). Electrochim Acta. https://doi.org/10.1016/0013-4686(91)85243-z

  9. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem. https://doi.org/10.1021/ac60210a007

  10. Parker VD (1986) Chapter 3 linear sweep and cyclic voltammetry. Compr Chem Kinetics. https://doi.org/10.1016/S0069-8040(08)70027-X

  11. Costentin C, Saveant JM (2015) Cyclic voltammetry analysis of electrocatalytic films. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.5b02376

  12. Aristov N, Habekost A (2015) Cyclic voltammetry - a versatile electrochemical method investigating electron transfer processes. World J Chem Educ 3:115–119. https://doi.org/10.12691/WJCE-3-5-2

    Article  CAS  Google Scholar 

  13. Guy OJ, Walker KAD (2016) Graphene functionalization for biosensor applications. In: Silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications: second edition. https://doi.org/10.1016/B978-0-12-802993-0.00004-6

  14. Jones HC, Roth IL, Sanders WM (1969) Electron microscopic study of a slime layer. J Bacteriol. https://doi.org/10.1128/jb.99.1.316-325.1969

  15. Kumbhat S, Dave S (1999) Voltammetric study of P-halo-nitrobenzenes at different electrodes. Bull Electrochem

    Google Scholar 

  16. Dave S, Kumbhat S (2018) Electrochemical and spectral characterization of silver nanoparticles synthesized employing root extract of curculigo orchioides. Indian J Chem Technol

    Google Scholar 

  17. Schmickler W (2014) Electrochemical theory: double layer. Ref Module Chem Mol Sci Chem Eng. https://doi.org/10.1016/b978-0-12-409547-2.11149-7

  18. Lasia A (2005) Electrochemical impedance spectroscopy and its applications. Modern Aspects Electrochem. https://doi.org/10.1007/0-306-46916-2_2

  19. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Electrochem Impedance Spectroscopy Appl. https://doi.org/10.1007/978-1-4614-8933-7

  20. Lasia A, Lasia A (2014) Determination of impedances. Electrochem Impedance Spectroscopy Appl. https://doi.org/10.1007/978-1-4614-8933-7_3

  21. Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem. https://doi.org/10.1146/annurev.anchem.012809.102211

  22. Instruments G. (2015) Introduction to electrochemical impedance spectroscopy, 2015

    Google Scholar 

  23. Orazem ME, Tribollet B (2008b) Electrochemical impedance spectroscopy. https://doi.org/10.1002/9780470381588

  24. Ciucci F (2019) Modeling electrochemical impedance spectroscopy. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2018.12.003

  25. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory. Exp Appl Impedance Spectrosc Theor Exp Appl. https://doi.org/10.1002/0471716243

  26. Park S-M, Yoo J-S (2003) Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements. Anal Chem. https://doi.org/10.1021/ac0313973

  27. Wagner N (2011) Electrochemical impedance spectroscopy. PEM Fuel Cell Diag Tools. https://doi.org/10.1201/b11100-5

  28. Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods. https://doi.org/10.1039/c3ay26476a

  29. Orazem ME, Tribollet B (2008a) An integrated approach to electrochemical impedance spectroscopy. Electrochim Acta. https://doi.org/10.1016/j.electacta.2007.10.075

  30. Ehrlich GD, Arciola CR (2012) From Koch’s postulates to biofilm theory. The lesson of bill Costerton. Int J Artif Organs. https://doi.org/10.5301/ijao.5000169

  31. Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth1. J Bacteriol. https://doi.org/10.1128/jb.40.4.547-558.1940

  32. Boels G (2011) Enzymatic removal of biofilms: a report. Virulence. https://doi.org/10.4161/viru.2.5.17317

  33. Zabell CE (1999) Claude E. Zobell – his life and contributions to biofilm microbiology. In: 8th international symposium on microbial ecology. https://doi.org/10.1007/s00280-010-1301-5

  34. Syron E, Casey E (2008) Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ Sci Technol. https://doi.org/10.1021/es0719428

  35. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol. https://doi.org/10.1146/annurev.micro.54.1.413

  36. Masák J et al (2014) Pseudomonas biofilms: possibilities of their control. FEMS Microbiol Ecol. https://doi.org/10.1111/1574-6941.12344

  37. Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud

    Google Scholar 

  38. Hernandez CA, Beni V, Osma JF (2019) Fully automated microsystem for unmediated electrochemical characterization, visualization and monitoring of bacteria on solid media; E. coli K-12: a case study. Biosensors. https://doi.org/10.3390/bios9040131

  39. Yuan Y, Zhou S, Xu N, Zhuang L (2011) Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells. Coll Surf B Biointerf 82(2):641–646

    Article  CAS  Google Scholar 

  40. Caizán-Juanarena L et al (2019) Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. J Power Sour. https://doi.org/10.1016/j.jpowsour.2019.04.042

  41. Kurissery SR, Kanavillil N, Leung KT, Chen A, Davey L, Schraft H (2010) Electrochemical and microbiological characterization of paper mill biofilms. Biofouling 26(7):799–808

    Article  CAS  Google Scholar 

  42. Patil SA, Hägerhäll C, Gorton L (2012) Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal Rev. https://doi.org/10.1007/s12566-012-0033-x

  43. Muñoz-Berbel X et al (2008) Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2008.01.007

  44. Bayoudh S et al (2005) Bacterial detachment from hydrophilic and hydrophobic surfaces using a microjet impingement. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2005.06.025

  45. Ben-Yoav H et al (2011) An electrochemical impedance model for integrated bacterial biofilms. Electrochim Acta. https://doi.org/10.1016/j.electacta.2010.12.025

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dave, S. et al. (2021). Contribution of Cyclic Voltammetry and Electrochemical Impedance Spectroscopy in Deciphering the Electron Transport System in Biofilm. In: Nag, M., Lahiri, D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1378-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1377-1

  • Online ISBN: 978-1-0716-1378-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics