Skip to main content

Strategies to Study Dark Growth Deficient or Slower Mutants in Chlamydomonas reinhardtii

  • Protocol
  • First Online:
Plant Photomorphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2297))

Abstract

Photosynthesis is the most important chemical reaction on the earth, and about 60% of the CO2 is fixed by algae through photosynthesis. Photosynthetic organisms including algae experience half of the entire life in the dark due to diel cycles, and dark metabolism is critical and necessary for photosynthetic organisms to restart photosynthesis when receiving light again. Briefly, dark metabolism provides necessary materials and energy for restoring photosynthesis, reoxidizes NADH to form NAD+, rationally stores photosynthates, and maintains correct redox balance. Chlamydomonas reinhardtii grows under both autotrophic and heterotrophic conditions, making it an ideal organism to study photosynthesis, dark metabolism, and light dark transitions as well. In addition, it provides a good model to identify key molecular components and elucidate the molecular regulatory mechanisms of heterotrophic, which provides new clues to understand how photosynthetic organisms restart photosynthesis from the dark. Chlamydomonas mutants with dark growth deficiency or slower growth phenotypes are likely caused by the inefficient uptake and transport of acetate, the damaged proteins of mitochondrial electron transport chain, the malfunctioned mitochondrion, the redox state alteration in the dark or failed communication between mitochondrion and other organelles, the imbalanced redox or the disrupted distribution of the photosynthetic products. Here we summarize the methods and strategies for analyzing these mutants in Chlamydomonas reinhardtii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perez-Garcia O, Escalante FME, de-Bashan LE et al (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  PubMed  Google Scholar 

  2. Yang WQ, Catalanotti C, Wittkopp TM et al (2015) Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. Plant J 82(3):481–503

    Article  CAS  PubMed  Google Scholar 

  3. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maul JE, Lilly JW, Cui LY et al (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14(11):2659–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  CAS  PubMed  Google Scholar 

  6. Grossman AR, Croft M, Gladyshev VN et al (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10(2):190–198

    Article  CAS  PubMed  Google Scholar 

  7. Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. Adv Exp Med Biol 616:34–45

    Article  PubMed  Google Scholar 

  8. González-Ballester D, Casero D, Cokus S et al (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22(6):2058–2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Aihara Y, Fujimura-Kamada K, Yamasaki T et al (2019) Algal photoprotection is regulated by the E3 ligase CUL4-DDB1DET1. Nature Plants 5(1):34–40

    Article  CAS  PubMed  Google Scholar 

  10. Minagawa J, Tokutsu R (2015) Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. Plant J 82(3):413–428

    Article  CAS  PubMed  Google Scholar 

  11. Saroussi S, Sanz-Luque E, Kim R et al (2017) Nutrient scavenging and energy management-acclimation responses in nitrogen and sulfur deprived Chlamydomonas. Cur Opin Plant Biol 39:114–122

    Article  CAS  Google Scholar 

  12. Chang CW, Moseley JL, Wykoff D et al (2005) The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation. Plant Physiol 138(1):319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Torzillo G, Scoma A, Faraloni C et al (2015) Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol 35(4):485–496

    Article  PubMed  CAS  Google Scholar 

  14. Esquivel MG, Amaro HM, Pinto TS et al (2011) Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29(12):595–600

    Article  CAS  PubMed  Google Scholar 

  15. Catalanotti C, Yang WQ, Posewitz MC et al (2013) Fermentation metabolism and its evolution in algae. Front Plant Sci 4:150

    Article  PubMed  PubMed Central  Google Scholar 

  16. Matsuo T, Ishiura M (2011) Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock. FEBS Lett 585(10):1495–1502

    Article  CAS  PubMed  Google Scholar 

  17. Ryo M, Matsuo T, Yamashino T et al (2016) Diversity of plant circadian clocks: insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. Plant Signal Behav 11(1):e1116661

    Article  PubMed  CAS  Google Scholar 

  18. Rochaix JD, Ramundo S (2015) Conditional repression of essential chloroplast genes: evidence for new plastid signaling pathways. Biochim Biophys Acta 1847(9):986–992

    Article  CAS  PubMed  Google Scholar 

  19. Rochaix JD, Fischer N, Hippler M (2000) Chloroplast site-directed mutagenesis of photosystem I in Chlamydomonas: electron transfer reactions and light sensitivity. Biochimie 82(6–7):635–645

    Article  CAS  PubMed  Google Scholar 

  20. Rochaix JD (2001) Assembly, function, and dynamics of the photosynthetic machinery in Chlamydomonas reinhardtii. Plant Physiol 127(4):1394–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duanmu DQ, Casero D, Dent RM et al (2013) Retrograde Bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci U S A 110(9):3621–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heinnickel ML, Alric J, Wittkopp T et al (2013) Novel thylakoid membrane GreenCut protein CPLD38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes. J Biol Chem 288(10):7024–7036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang YQ, Duanmu DQ, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109(1–3):115–122

    Article  CAS  PubMed  Google Scholar 

  24. Wang YJ, Stessman DJ, Spalding MH (2015) The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J 82(3):429–448

    Article  PubMed  CAS  Google Scholar 

  25. Duanmua DQ, Millerb AR, Horkenb KM et al (2009) Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3 transport and photosynthetic ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 106(14):5990–5995

    Article  Google Scholar 

  26. Rea G, Antonacci A, Lambreva MD et al (2018) Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. Plant Sci 272:193–206

    Article  CAS  PubMed  Google Scholar 

  27. Wittkopp TM, Schmollinger S, Saroussi S et al (2017) Bilin-dependent photoacclimation in Chlamydomonas reinhardtii. Plant Cell 29(11):2711–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu L, Wen B, Shao WG et al (2019) Impacts of Cys392, Asp393, and ATP on the FAD binding, photoreduction, and the stability of the radical state of Chlamydomonas reinhardtii cryptochrome. Chembiochem 20(7):940–948

    Article  CAS  PubMed  Google Scholar 

  29. Allorent G, Lefebvre-Legendre L, Chappuis R et al (2016) UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113(51):14864–14869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choix FJ, López-Cisneros CG, Méndez-Acosta HO (2018) Azospirillum brasilense increases CO2 fixation on microalgae scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii cultured on high CO2 concentrations. Microb Ecol 76(2):430–442

    Article  CAS  PubMed  Google Scholar 

  31. Xie B, Bishop S, Stessman D et al (2013) Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J 7(8):1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dutcher SK (2014) The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 71(2):79–94

    Article  Google Scholar 

  33. Wingfield JL, Lechtreck KF (2018) Chlamydomonas basal bodies as flagella organizing centers. Cell 7(7):79

    Article  CAS  Google Scholar 

  34. Snell WJ, Pan J, Wang Q (2004) Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117(6):693–697

    Article  CAS  PubMed  Google Scholar 

  35. Williamson SM, Silva DA, Richey E et al (2012) Probing the role of IFT particle complex A and B in flagellar entry and exit of IFT-dynein in Chlamydomonas. Protoplasma 249(3):851–856

    Article  CAS  PubMed  Google Scholar 

  36. Wang ZT, Ullrich N, Joo S et al (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heredia-Martínez LG, Andrés-Garrido A, Martínez-Force E et al (2018) Chloroplast damage induced by the inhibition of fatty acid synthesis triggers autophagy in Chlamydomonas. Plant Physiol 178(3):1112–1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li-Beisson YH, Thelen JJ, Fedosejevs E et al (2019) The lipid biochemistry of eukaryotic algae. Prog Lipid Res 74:31–68

    Article  CAS  PubMed  Google Scholar 

  39. Liu YC, Nakamura Y (2019) Triacylglycerol production in the snow algae Chlamydomonas nivalis under different nutrient conditions. Lipids 54(4):255–262

    Article  CAS  PubMed  Google Scholar 

  40. Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  CAS  PubMed  Google Scholar 

  41. Xue HD, Bergner SV, Scholz M et al (2015) Novel insights into the function of LHCSR3 in Chlamydomonas reinhardtii. Plant Signal Behav 10(12):e1058462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xue JH, Chen GD, Hao F et al (2019) A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature 569(7757):581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seluzicki A, Burko Y, Chory J (2017) Dancing in the dark: darkness as a signal in plants. Plant Cell Environ 40(11):2487–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Josse EM, Halliday KJ (2008) Skotomorphogenesis: the dark side of light signalling. Curr Biol 18(24):R1144–R1146

    Article  CAS  PubMed  Google Scholar 

  45. Salinas T, Larosa V, Cardol P et al (2014) Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review. Biochimie 100:207–218

    Article  CAS  PubMed  Google Scholar 

  46. Strenkert D, Schmollinger S, Gallaher SD et al (2019) Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc Natl Acad Sci U S A 116(6):2374–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Subrahmanian N, Remacle C, Hamel PP (2016) Plant mitochondrial complex I composition and assembly: a review. Biochim Biophys Acta 1857(7):1001–1014

    Article  CAS  PubMed  Google Scholar 

  48. Plancke C, Vigeolas H, Höhner R et al (2014) Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J 77(3):404–417

    Article  CAS  PubMed  Google Scholar 

  49. Colin M, Dorthu M, Duby F et al (1995) Mutations affecting the mitochondrial genes encoding the cytochrome oxidase subunit I and apocytochrome b of Chlamydomonas reinhardtii. Mol Gen Genet 249(2):179–184

    Article  CAS  PubMed  Google Scholar 

  50. Schönfeld C, Wobbe L, Borgstädt R et al (2004) The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem 279(48):50366–50374

    Article  PubMed  CAS  Google Scholar 

  51. Matagne RF, Michel-Wolwertz MR, Munaut C et al (1989) Induction and characterization of mitochondrial DNA mutants in Chlamydomonas reinhardtii. J Cell Biol 108(4):1221–1226

    Article  CAS  PubMed  Google Scholar 

  52. Dorthu MP, Remy S, Michel-Wolwertz MR et al (1991) Biochemical, genetic and molecular characterization of new respiratory-deficient mutants in Chlamydomonas reinhardtii. Plant Mol Biol 18(4):759–772

    Article  Google Scholar 

  53. Duby F, Matagne RF (1999) DNA deletion mutant of Chlamydomonas lacking cob, nd4, and the 3′ end of nd5. Plant Cell 11(1):115–125

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Remacle C, Duby F, Cardol P et al (2001) Mutations inactivating mitochondrial genes in Chlamydomonas reinhardtii. Biochem Soc Trans 29(Pt 4):442–446

    Article  CAS  PubMed  Google Scholar 

  55. Remacle C, Baurain D, Cardol P et al (2001) Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. Genetics 158(3):1051–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardol P, Matagne RF, Remacle C (2002) Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 319(5):1211–1221

    Article  CAS  PubMed  Google Scholar 

  57. Cardol P, Boutaffala L, Memmi S et al (2008) In Chlamydomonas, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex. Biochim Biophys Acta 1777(4):388–396

    Article  CAS  PubMed  Google Scholar 

  58. Atteia A, van Lis R, Gelius-Dietrich G et al (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281(15):9909–9918

    Article  CAS  PubMed  Google Scholar 

  59. Michaelis G, Vahrenholz C, Pratje E (1990) Mitochondrial DNA of Chlamydomonas reinhardtii: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. Mol Gen Genet 223(2):211–216

    Article  CAS  PubMed  Google Scholar 

  60. Gray MW, Boer PH (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond 319(1193):135–147

    CAS  Google Scholar 

  61. Paschen SA, Neupert W (2001) Protein import into mitochondria. IUBMB Life 52(3–5):101–112

    Article  CAS  PubMed  Google Scholar 

  62. Kornberg HL, Krebs HA (1957) Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179(4568):988–991

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi Y, Shinozaki A (2012) Visualization of microbodies in Chlamydomonas reinhardtii. J Plant Res 125(4):579–586

    Article  CAS  PubMed  Google Scholar 

  64. Canvin DT, Beevers H (1961) Sucrose synthesis from acetate in germinating castor bean: kinetics and pathway. J Biol Chem 236:988–995

    Article  CAS  PubMed  Google Scholar 

  65. Bedhomme M, Zaffagnini M, Marchand CH et al (2009) Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii. J Biol Chem 284(52):36282–36291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schnarrenberger C, Martin W (2002) Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. Eur J Biochem 269(3):868–883

    Article  CAS  PubMed  Google Scholar 

  67. Nogales J, Guijo MI, Quesada A et al (2004) Functional analysis and regulation of the malate synthase from Chlamydomonas reinhardtii. Planta 219(2):325–331

    Article  CAS  PubMed  Google Scholar 

  68. Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6(2):72–78

    Article  CAS  PubMed  Google Scholar 

  69. Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68(3):475–478

    Article  CAS  PubMed  Google Scholar 

  70. Bhandary S, Aguan K (2015) Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency-an overview. Epilepsy Res 116:40–52

    Article  CAS  PubMed  Google Scholar 

  71. Klöck G, Kreuzberg K (1991) Compartmented metabolite pools in protoplasts from the green alga Chlamydomonas reinhardtii: changes after transition from aerobiosis to anaerobiosis in the dark. Biochim Biophys Acta 1073(2):410–415

    Article  PubMed  Google Scholar 

  72. Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta 1366:235–255

    Article  CAS  Google Scholar 

  73. Krömer S, Scheibe S (1996) Function of the chloroplastic malate valve for respiration during photosynthesis. Biochem Soc Trans 24(3):761–766

    Article  PubMed  Google Scholar 

  74. Noctor G, Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49(329):1895–1908

    CAS  Google Scholar 

  75. Oliver DJ (1994) The glycine decarboxylase complex from plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 45:323–337

    Article  CAS  Google Scholar 

  76. Selinski J, Scheibe R (2019) Malate valves: old shuttles with new perspectives. Plant Biol 21(Suppl. 1):21–30

    Article  CAS  PubMed  Google Scholar 

  77. Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120(1):21–26

    Article  CAS  PubMed  Google Scholar 

  78. Hanning H, Baumgarten K, Schott K et al (1999) Oxaloacetate transport into plant mitochondria. Plant Physiol 119(3):1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gálvez S, Lancien M, Hodges M (1999) Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci 4(12):484–490

    Article  PubMed  Google Scholar 

  80. Escobar MA, Geisler DA, Rasmusson AG (2006) Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J 45(5):775–788

    Article  CAS  PubMed  Google Scholar 

  81. Foyer CH, Bloom AJ, Queval G et al (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  CAS  PubMed  Google Scholar 

  82. Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  CAS  PubMed  Google Scholar 

  83. Matsuo M, Obokata J (2006) Remote control of photosynthetic genes by the mitochondrial respiratory chain. Plant J 47(6):873–882

    Article  CAS  PubMed  Google Scholar 

  84. Huertas IE, Colman B, Espie GS (2002) Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga. Plant Physiol 130(1):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cardol P, Gloire G, Havaux M et al (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133(4):2010–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang WQ, Wittkopp TM, Li XB et al (2015) Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism. Proc Natl Acad Sci U S A 112(48):14978–14983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Düner M, Lambertz J, Mügge C et al (2018) The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. Plant J 93(2):311–337

    Article  PubMed  CAS  Google Scholar 

  88. Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  89. Porra RJ, Thompson WA, Kriedelmann PE (1989) Determination of accurate extractions and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of concentrations of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  90. Vigeolas H, Duby F, Kaymak E et al (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162(1):3–12

    Article  CAS  PubMed  Google Scholar 

  91. Chaux F, Burlacot A, Mekhalfi M et al (2017) Flavodiiron proteins promote fast and transient O2 photoreduction in Chlamydomonas. Plant Physiol 174(3):1825–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Radmer RJ, Kok B (1976) Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol 58(3):336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tardif M, Atteia A, Specht M et al (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29(12):3625–3639

    Article  CAS  PubMed  Google Scholar 

  94. Van Lis R, Atteia A, Mendoza-Hernández G et al (2003) Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol 132(1):318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Terashima M, Specht M, Naumann B et al (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9(7):1514–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Masset J, Hiligsmann S, Hamilton C et al (2010) Effect of pH on glucose and starch fermentation in batch and sequenced batch mode by new isolated strain of hydrogen producers of Clostridium butyricum. Int J Hydrog Energy 35:3371–3378

    Article  CAS  Google Scholar 

  97. Delrue B, Fontaine T, Routier F et al (1992) Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol 174(11):3612–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Doebbe A, Keck M, Russa ML et al (2010) The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii. J Biol Chem 285(39):30247–30260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Massoz S, Larosa V, Horrion B et al (2015) Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement. J Biotechnol 215:27–34

    Article  CAS  PubMed  Google Scholar 

  100. Gans P, Rebeille F (1990) Control in the dark of the plastoquinone redox state by mitochondrial activity in Chlamydomonas reinhardtii. Biochim Biophys Acta 1015:150–155

    Article  CAS  Google Scholar 

  101. Svensson ÅS, Rasmusson AG (2001) Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J 28(1):73–82

    Article  CAS  PubMed  Google Scholar 

  102. Terauchi AM, Lu SF, Zaffagnini M et al (2009) Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii. J Biol Chem 284(38):25867–25878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Avila L, Wirtz M, Bunce RA et al (1999) An electrochemical study of the factors responsible for modulating the reduction potential of putidaredoxin. J Biol Inorg Chem 4(5):664–674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2019YFA0904600) and the National Natural Science Foundation of China (Project grant No. 31870217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, H., Han, F., Wang, Y., Yang, W., Tu, W. (2021). Strategies to Study Dark Growth Deficient or Slower Mutants in Chlamydomonas reinhardtii . In: Yin, R., Li, L., Zuo, K. (eds) Plant Photomorphogenesis. Methods in Molecular Biology, vol 2297. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1370-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1370-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1369-6

  • Online ISBN: 978-1-0716-1370-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics