Skip to main content

Imaging of Spatial Cycling of Rab GTPase in the Cell

  • Protocol
  • First Online:
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2293))

Abstract

Rab GTPases (>60 members in human) function as master regulators of intracellular membrane trafficking. To fulfill their functions, Rab proteins need to localize on specific membranes in cells. It remains elusive how the distinct spatial distribution of Rab GTPases in the cell is regulated. To make a global assessment on the subcellular localization of Rab1, we determined kinetic parameters of the spatial cycling of Rab1 in live cells using photoactivatable fluorescent proteins and live cell imaging. We found that the switching between GTP- and GDP-binding states, which is governed by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), GDP dissociation inhibitor (GDI) and GDI displacement factor (GDF), is a major determinant for Rab1’s ability to effectively cycle between cellular compartments and eventually for its subcellular distribution. Herein, we describe the method for monitoring Rab1 dynamics in live cells. This approach can be used to study spatial cycling of other Rab GTPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149

    Article  CAS  Google Scholar 

  2. Pylypenko O et al (2018) Rab GTPases and their interacting protein partners: structural insights into Rab functional diversity. Small GTPases 9(1-2):22–48

    Article  CAS  Google Scholar 

  3. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877

    Article  CAS  Google Scholar 

  4. Wu Y-W et al (2007) Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proc Natl Acad Sci U S A 104(30):12294–12299

    Article  CAS  Google Scholar 

  5. Pylypenko O et al (2006) Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO J 25(1):13–23

    Article  CAS  Google Scholar 

  6. Pfeffer SR, Dirac-Svejstrup AB, Soldati T (1995) Rab GDP dissociation inhibitor: putting Rab GTPases in the right place. J Biol Chem 270(29):17057–17059

    Article  CAS  Google Scholar 

  7. Rak A et al (2003) Structure of Rab GDP-dissociation inhibitor in complex with Prenylated YPT1 GTPase. Science 302(5645):646–650

    Article  CAS  Google Scholar 

  8. Sivars U, Aivazian D, Pfeffer SR (2003) Yip3 catalyses the dissociation of endosomal Rab–GDI complexes. Nature 425(6960):856–859

    Article  CAS  Google Scholar 

  9. Goody Roger S, Müller Matthias P, Wu Y-W (2017) Mechanisms of action of Rab proteins, key regulators of intracellular vesicular transport. Biol Chem:565

    Google Scholar 

  10. Wu Y-W et al (2010) Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nat Chem Biol 6(7):534–540

    Article  CAS  Google Scholar 

  11. Voss S et al (2019) Spatial cycling of Rab GTPase, driven by the GTPase cycle, controls Rab’s subcellular distribution. Biochemistry 58(4):276–285

    Article  CAS  Google Scholar 

  12. Plutner H et al (1991) Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol 115:31

    Article  CAS  Google Scholar 

  13. Saraste J, Lahtinen U, Goud B (1995) Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway. J Cell Sci 108(4):1541–1552

    Article  CAS  Google Scholar 

  14. Carlos Martín Zoppino F et al (2010) Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11:1246

    Article  CAS  Google Scholar 

  15. Mukherjee S et al (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103

    Article  CAS  Google Scholar 

  16. Muller MP et al (2010) The legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946

    Article  Google Scholar 

  17. Neunuebel MR et al (2011) De-AMPylation of the small GTPase Rab1 by the pathogen legionella pneumophila. Science 333:453

    Article  CAS  Google Scholar 

  18. Goody PR et al (2012) Reversible phosphocholination of Rab proteins by legionella pneumophila effector proteins. EMBO J 31:1774

    Article  CAS  Google Scholar 

  19. Jones S et al (2000) The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 11(12):4403–4411

    Article  CAS  Google Scholar 

  20. Wang W, Sacher M, Ferro-Novick S (2000) Trapp stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151(2):289–296

    Article  CAS  Google Scholar 

  21. Cai H et al (2007) TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445(7130):941–944

    Article  CAS  Google Scholar 

  22. Sklan EH et al (2007) TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J Biol Chem 282:36354

    Article  CAS  Google Scholar 

  23. Rodriguez EA et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42(2):111–129

    Article  CAS  Google Scholar 

  24. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873

    Article  CAS  Google Scholar 

  25. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol 5(volume), S7–S14(page)

    Google Scholar 

  26. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC (2012) Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17(4):4047–4132

    Article  CAS  Google Scholar 

  27. Wu YW et al (2006) A protein fluorescence amplifier: Continuous fluorometric assay for Rab geranylgeranyltransferase. Chembiochem 7(12):1859–1861

    Google Scholar 

  28. Nguyen UT et al (2009) Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol 5(4):227–235

    Google Scholar 

Download references

Acknowledgments

We thank Sven Müller for technical support with Microscopy . This work was supported by the Deutsche Forschungsgemeinschaft, DFG (Grants SPP 1623 and SFB 642), the European Research Council (ERC, ChemBioAP), Vetenskapsrådet (Nr. 2018-04585), the Knut and Alice Wallenberg Foundation and Goran Gustafsson Foundation for Research in Natural Sciences and Medicine (to Y.W.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Wen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, F., Wu, YW. (2021). Imaging of Spatial Cycling of Rab GTPase in the Cell. In: Li, G., Segev, N. (eds) Rab GTPases. Methods in Molecular Biology, vol 2293. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1346-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1346-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1345-0

  • Online ISBN: 978-1-0716-1346-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics