Skip to main content

Detecting Endogenous Rab8 Activation

  • Protocol
  • First Online:
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2293))

  • 922 Accesses

Abstract

The family of Rab GTPases switch between GDP- and GTP-bound forms to interact with effectors and accessory proteins for the regulation of trafficking and signaling pathways in cells. The activation and recruitment of a specific Rab by stimulants or physiological changes can be detected and assessed by measuring the relative amount of the Rab in its active, “GTP-bound” state versus the inactive “GDP-bound” state. While GTP loading can be measured in vitro, current methods to detect the activation state of endogenous Rabs within a cellular context are limited. Here, we developed two molecular probes, based on domains of known Rab effectors, which can be used to pull down endogenous GTP-bound Rab8 from cell extracts as a measure of Rab8 activation. As a test system, we use the lipopolysaccharide (LPS) induced activation of Rab8 in mouse macrophages. The molecular probes compared for capture of GTP-bound Rab8 are derived from two Rab8 effectors, OCRL and PI3Kγ, with the former assessed as being more efficient. We describe how the OCRL-RBD probe is used to assess activation of Rab8 in cell extracts with a method that should be applicable to assessing GTP-bound Rab8 in other cell and tissue extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kelly EE, Horgan CP, Goud B, McCaffrey MW (2012) The Rab family of proteins: 25 years on. Biochem Soc Trans 40(6):1337–1347. https://doi.org/10.1042/BST20120203

    Article  PubMed  CAS  Google Scholar 

  2. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525. https://doi.org/10.1038/nrm2728

    Article  PubMed  CAS  Google Scholar 

  3. Pylypenko O, Hammich H, Yu IM, Houdusse A (2018) Rab GTPases and their interacting protein partners: structural insights into Rab functional diversity. Small GTPases 9(1-2):22–48. https://doi.org/10.1080/21541248.2017.1336191

    Article  PubMed  CAS  Google Scholar 

  4. Muller MP, Goody RS (2018) Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases 9(1-2):5–21. https://doi.org/10.1080/21541248.2016.1276999

    Article  PubMed  CAS  Google Scholar 

  5. Peranen J (2011) Rab8 GTPase as a regulator of cell shape. Cytoskeleton (Hoboken) 68(10):527–539. https://doi.org/10.1002/cm.20529

    Article  CAS  Google Scholar 

  6. Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, Chen KW, Jackson S, Jenkins BJ, Hartland EL, Schroder K, Collins BM, Sweet MJ, Stow JL (2014) Rab8a interacts directly with PI3Kgamma to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 5:4407. https://doi.org/10.1038/ncomms5407

    Article  PubMed  CAS  Google Scholar 

  7. Luo L, Wall AA, Tong SJ, Hung Y, Xiao Z, Tarique AA, Sly PD, Fantino E, Marzolo MP, Stow JL (2018) TLR crosstalk activates LRP1 to recruit Rab8a and PI3Kgamma for suppression of inflammatory responses. Cell Rep 24(11):3033–3044. https://doi.org/10.1016/j.celrep.2018.08.028

    Article  PubMed  CAS  Google Scholar 

  8. Wall AA, Condon ND, Luo L, Stow JL (2019) Rab8a localisation and activation by toll-like receptors on macrophage macropinosomes. Philos Trans R Soc Lond Ser B Biol Sci 374(1765):20180151. https://doi.org/10.1098/rstb.2018.0151

    Article  CAS  Google Scholar 

  9. Tong SJ, Wall AA, Hung Y, Luo L, Stow JL (2019) Guanine nucleotide exchange factors activate Rab8a for toll-like receptor signalling. Small GTPases:1–17. https://doi.org/10.1080/21541248.2019.1587278

  10. Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL (2017) Rab8a recruited PI3Kgamma regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem. https://doi.org/10.1074/jbc.M116.766337

  11. Fukuda M, Kanno E, Ishibashi K, Itoh T (2008) Large scale screening for novel Rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7(6):1031–1042. https://doi.org/10.1074/mcp.M700569-MCP200

    Article  PubMed  CAS  Google Scholar 

  12. De Matteis MA, Staiano L, Emma F, Devuyst O (2017) The 5-phosphatase OCRL in Lowe syndrome and dent disease 2. Nat Rev Nephrol 13(8):455–470. https://doi.org/10.1038/nrneph.2017.83

    Article  PubMed  CAS  Google Scholar 

  13. Hagemann N, Hou X, Goody RS, Itzen A, Erdmann KS (2012) Crystal structure of the Rab binding domain of OCRL1 in complex with Rab8 and functional implications of the OCRL1/Rab8 module for Lowe syndrome. Small GTPases 3(2):107–110. https://doi.org/10.4161/sgtp.19380

    Article  PubMed  Google Scholar 

  14. Langemeyer L, Nunes Bastos R, Cai Y, Itzen A, Reinisch KM, Barr FA (2014) Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. elife 3:e01623. https://doi.org/10.7554/eLife.01623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Parkinson K, Baines AE, Keller T, Gruenheit N, Bragg L, North RA, Thompson CR (2014) Calcium-dependent regulation of Rab activation and vesicle fusion by an intracellular P2X ion channel. Nat Cell Biol 16(1):87. https://doi.org/10.1038/ncb2887

    Article  PubMed  CAS  Google Scholar 

  16. Romero Rosales K, Peralta ER, Guenther GG, Wong SY, Edinger AL (2009) Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis. Mol Biol Cell 20(12):2831–2840. https://doi.org/10.1091/mbc.E08-09-0911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang J, Ren J, Wu B, Feng S, Cai G, Tuluc F, Peranen J, Guo W (2015) Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proc Natl Acad Sci U S A 112(1):148–153. https://doi.org/10.1073/pnas.1412089112

    Article  PubMed  CAS  Google Scholar 

  18. Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL (2017) Small GTPase Rab8a-recruited phosphatidylinositol 3-kinase gamma regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem 292(11):4411–4422. https://doi.org/10.1074/jbc.M116.766337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Luo L, King NP, Yeo JC, Jones A, Stow JL (2014) Single-step protease cleavage elution for identification of protein-protein interactions from GST pull-down and mass spectrometry. Proteomics 14(1):19–23. https://doi.org/10.1002/pmic.201300315

    Article  PubMed  CAS  Google Scholar 

  20. Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A (2011) A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 30(8):1659–1670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank colleagues from the Itzen laboratory Max Planck Institute of Molecular Physiology, Germany) for provision of the OCRL539-901 construct, we thank Tatiana Khromykh (IMB) for help with cloning. This work was supported by fellowship (JLS:APP1176209) and grant funding (APP1101072, APP1138723, and APP1159106) from the National Health and Medical Research Council of Australia and fellowship (LL: DE180100524) funding from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Luo or Jennifer L. Stow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tong, S.J., Lucas, R.M., Xiao, Z., Luo, L., Stow, J.L. (2021). Detecting Endogenous Rab8 Activation. In: Li, G., Segev, N. (eds) Rab GTPases. Methods in Molecular Biology, vol 2293. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1346-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1346-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1345-0

  • Online ISBN: 978-1-0716-1346-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics