Skip to main content

Genetic Transformation of Trichoderma spp.

  • Protocol
  • First Online:
Biofuels and Biodiesel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2290))

Abstract

The production of biofuels from plant biomass is dependent on the availability of enzymes that can hydrolyze the plant cell wall polysaccharides to their monosaccharides. These enzyme mixtures are formed by microorganisms but their native compositions and properties are often not ideal for application. Genetic engineering of these microorganisms is therefore necessary, in which introduction of DNA is an essential precondition. The filamentous fungus Trichoderma reesei—the main producer of plant-cell-wall-degrading enzymes for biofuels and other industries—has been subjected to intensive genetic engineering toward this goal and has become one of the iconic examples of the successful genetic improvement of fungi. However, the genetic manipulation of other enzyme-producing Trichoderma species is frequently less efficient and, therefore, rarely managed. In this chapter, we therefore describe the two potent methods of Trichoderma transformation mediated by either (a) polyethylene glycol (PEG) or (b) Agrobacterium. The methods are optimized for T. reesei but can also be applied for such transformation-resilient species as T. harzianum and T. guizhouense, which are putative upcoming alternatives for T. reesei in this field. The protocols are simple, do not require extensive training or special equipment, and can be further adjusted for T. reesei mutants with particular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Only the pioneering publications are cited here.

References

  1. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448. https://doi.org/10.1021/cr500351c

    Article  CAS  PubMed  Google Scholar 

  2. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645. https://doi.org/10.1016/j.tibs.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  3. Kubicek CP, Kubicek EM (2016) Enzymatic deconstruction of plant biomass by fungal enzymes. Curr Opin Chem Biol 35:51–57. https://doi.org/10.1016/j.cbpa.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  4. Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttila M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77(1):114–121. https://doi.org/10.1128/AEM.02100-10

    Article  CAS  PubMed  Google Scholar 

  5. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158(Pt 1):58–68. https://doi.org/10.1099/mic.0.054031-0

    Article  CAS  PubMed  Google Scholar 

  6. Malmierca MG, Cardoza RE, Gutiérrez S (2015) Trichoderma transformation methods. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 1. Springer International Publishing, Cham, pp 41–48. https://doi.org/10.1007/978-3-319-10142-2_3

    Chapter  Google Scholar 

  7. Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):106. https://doi.org/10.1186/s12934-016-0507-6

    Article  CAS  Google Scholar 

  8. Gupta VK, Steindorff AS, de Paula RG, Silva-Rocha R, Mach-Aigner AR, Mach RL, Silva RN (2016) The post-genomic era of Trichoderma reesei: what’s next? Trends Biotechnol 34(12):970–982. https://doi.org/10.1016/j.tibtech.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  9. Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 10(6):1485–1499. https://doi.org/10.1111/1751-7915.12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. https://doi.org/10.1038/nbt1403

    Article  CAS  PubMed  Google Scholar 

  11. Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(38):16151–16156. https://doi.org/10.1073/pnas.0905848106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vitikainen M, Arvas M, Pakula T, Oja M, Penttila M, Saloheimo M (2010) Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 11:441. https://doi.org/10.1186/1471-2164-11-441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, Austerlitz T, Grigoriev IV, Baker SE, Margeot A, Seiboth B, Kubicek CP (2015) Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics 16:326. https://doi.org/10.1186/s12864-015-1526-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanova C, Ramoni J, Aouam T, Frischmann A, Seiboth B, Baker SE, Le Crom S, Lemoine S, Margeot A, Bidard F (2017) Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnol Biofuels 10:209. https://doi.org/10.1186/s13068-017-0897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li WC, Huang CH, Chen CL, Chuang YC, Tung SY, Wang TF (2017) Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10:170. https://doi.org/10.1186/s13068-017-0825-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jourdier E, Baudry L, Poggi-Parodi D, Vicq Y, Koszul R, Margeot A, Marbouty M, Bidard F (2017) Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes. Biotechnol Biofuels 10:151. https://doi.org/10.1186/s13068-017-0837-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zou Z, Zhao Y, Zhang T, Xu J, He A, Deng Y (2018) Efficient isolation and characterization of a cellulase hyperproducing mutant strain of Trichoderma reesei. J Microbiol Biotechnol 28(9):1473–1481. https://doi.org/10.4014/jmb.1805.05009

    Article  CAS  PubMed  Google Scholar 

  18. Liu P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W (2019) Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Microb Cell Factories 18(1):81. https://doi.org/10.1186/s12934-019-1131-z

    Article  Google Scholar 

  19. Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G, Parodi DP, Syan S, Guillen N, Margeot A, Zimmer C, Koszul R (2014) High-quality genome (re)assembly using chromosomal contact data. Nat Commun 5:5695. https://doi.org/10.1038/ncomms6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Druzhinina IS, Kopchinskiy AG, Kubicek EM, Kubicek CP (2016) A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness. Biotechnol Biofuels 9:75. https://doi.org/10.1186/s13068-016-0488-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferreira Filho JA, Horta MAC, Beloti LL, Dos Santos CA, de Souza AP (2017) Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. BMC Genomics 18(1):779. https://doi.org/10.1186/s12864-017-4181-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grujic M, Dojnov B, Potocnik I, Atanasova L, Duduk B, Srebotnik E, Druzhinina IS, Kubicek CP, Vujcic Z (2019) Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw. World J Microbiol Biotechnol 35(12):194. https://doi.org/10.1007/s11274-019-2774-y

    Article  CAS  PubMed  Google Scholar 

  23. Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang DQ, Miao YZ, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Abu Salim K, Pretzer C, Kopchinskiy AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, LaButti K, Barry K, Grigoriev IV, Shen QR, Kubicek CP (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14(4):e1007322. https://doi.org/10.1371/journal.pgen.1007322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20(1):485. https://doi.org/10.1186/s12864-019-5680-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS (2016) The neutral metallopeptidase NMP1 of Trichoderma guizhouense is required for mycotrophy and self-defence. Environ Microbiol 18(2):580–597. https://doi.org/10.1111/1462-2920.12966

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Miao Y, Rahimi MJ, Zhu H, Steindorff A, Schiessler S, Cai F, Pang G, Chenthamara K, Xu Y, Kubicek CP, Shen Q, Druzhinina IS (2019) Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ Microbiol 21(8):2644–2658. https://doi.org/10.1111/1462-2920.14575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao R, Ding M, Jiang S, Zhao Z, Chenthamara K, Shen Q, Cai F, Druzhinina IS (2020) The evolutionary and functional paradox of cerato-platanins in fungi. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00696-20

  28. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164. https://doi.org/10.1016/0378-1119(87)90110-7

    Article  PubMed  Google Scholar 

  29. Gruber F, Visser J, Kubicek CP, de Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18(1):71–76. https://doi.org/10.1007/BF00321118

    Article  CAS  PubMed  Google Scholar 

  30. Smith JL, Bayliss FT, Ward M (1991) Sequence of the cloned pyr4 gene of Trichoderma reesei and its use as a homologous selectable marker for transformation. Curr Genet 19(1):27–33. https://doi.org/10.1007/BF00362084

    Article  CAS  PubMed  Google Scholar 

  31. Lorito M, Hayes CK, Di Pietro A, Harman GE (1993) Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet 24(4):349–356. https://doi.org/10.1007/BF00336788

    Article  CAS  PubMed  Google Scholar 

  32. Zeilinger S (2004) Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet 45(1):54–60. https://doi.org/10.1007/s00294-003-0454-8

    Article  CAS  PubMed  Google Scholar 

  33. Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5(1):1. https://doi.org/10.1186/1754-6834-5-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magana-Ortiz D, Coconi-Linares N, Ortiz-Vazquez E, Fernandez F, Loske AM, Gomez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16. https://doi.org/10.1016/j.fgb.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57–74. https://doi.org/10.1016/s0065-2164(08)70146-1

    Article  CAS  PubMed  Google Scholar 

  36. Reagents, Buffers, and Indicators (2017) ACS Reagent Chemicals. Am Chem Soc. https://doi.org/10.1021/acsreagents.3001

  37. Ogawa Y, Mii M (2004) Screening for highly active β-lactam antibiotics against Agrobacterium tumefaciens. Arch Microbiol 181(4):331–336. https://doi.org/10.1007/s00203-004-0650-z

    Article  CAS  PubMed  Google Scholar 

  38. Fincham JR (1989) Transformation in fungi. Microbiol Rev 53(1):148–170

    Article  CAS  Google Scholar 

  39. Li D, Tang Y, Lin J, Cai W (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Factories 16(1):168. https://doi.org/10.1186/s12934-017-0785-7

    Article  CAS  Google Scholar 

  40. Flores-Felix JD, Menendez E, Peix A, Garcia-Fraile P, Velazquez E (2020) History and current taxonomic status of genus Agrobacterium. Syst Appl Microbiol 43(1):126046. https://doi.org/10.1016/j.syapm.2019.126046

    Article  PubMed  Google Scholar 

  41. Barton IS, Fuqua C, Platt TG (2018) Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 20(1):16–29. https://doi.org/10.1111/1462-2920.13976

    Article  PubMed  Google Scholar 

  42. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37, table of contents. https://doi.org/10.1128/mmbr.67.1.16-37.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dunn-Coleman N, Wang H (1998) Agrobacterium T-DNA: a silver bullet for filamentous fungi? Nat Biotechnol 16(9):817–818. https://doi.org/10.1038/nbt0998-817

    Article  CAS  PubMed  Google Scholar 

  44. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839–842. https://doi.org/10.1038/nbt0998-839

    Article  PubMed  Google Scholar 

  45. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48(1):1–17. https://doi.org/10.1007/s00294-005-0578-0

    Article  CAS  PubMed  Google Scholar 

  46. Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6. https://doi.org/10.1186/s40694-017-0035-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Friedl MA, Schmoll M, Kubicek CP, Druzhinina IS (2008) Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154(Pt 4):1229–1241. https://doi.org/10.1099/mic.0.2007/014175-0

    Article  CAS  PubMed  Google Scholar 

  48. Carreras-Villasenor N, Sanchez-Arreguin JA, Herrera-Estrella AH (2012) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158(Pt 1):3–16. https://doi.org/10.1099/mic.0.052688-0

    Article  CAS  PubMed  Google Scholar 

  49. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218. https://doi.org/10.1007/BF01977351

    Article  CAS  Google Scholar 

  50. Kunamneni A, Plou FJ, Alcalde M, Ballesteros A (2014) Chapter 24: Trichoderma enzymes for food industries. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 339–344. https://doi.org/10.1016/B978-0-444-59576-8.00024-2

    Chapter  Google Scholar 

  51. Druzhinina IS, Kubicek CP, Komon-Zelazowska M, Mulaw TB, Bissett J (2010) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 10:94. https://doi.org/10.1186/1471-2148-10-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3):558–590. https://doi.org/10.3852/14-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sandoval-Denis M, Sutton DA, Cano-Lira JF, Gené J, Fothergill AW, Wiederhold NP, Guarro J (2014) Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 52(6):2112–2125. https://doi.org/10.1128/JCM.00429-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blochlinger K, Diggelmann H (1984) Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells. Mol Cell Biol 4(12):2929. https://doi.org/10.1128/MCB.4.12.2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hua J, Meyer JD, Lodge JK (2000) Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans. Clin Diagn Lab Immunol 7(1):125–128. https://doi.org/10.1128/cdli.7.1.125-128.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Solis-Escalante D, Kuijpers NGA, Nadine B, Bolat I, Bosman L, Pronk JT, Daran J-M, Pascale D-L (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126–139. https://doi.org/10.1111/1567-1364.12024

    Article  CAS  PubMed  Google Scholar 

  57. Guangtao Z, Seiboth B, Wen C, Yaohua Z, Xian L, Wang T (2010) A novel carbon source-dependent genetic transformation system for the versatile cell factory Hypocrea jecorina (anamorph Trichoderma reesei). FEMS Microbiol Lett 303(1):26–32. https://doi.org/10.1111/j.1574-6968.2009.01851.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Renwei Gao, Siqi Jiang, Jian Zhang, and Zheng Zhao (Nanjing Agricultural University, Nanjing, China) for the materials used for images and useful comments. This work was supported by grants from the National Natural Science Foundation of China (31801939) and the Ministry of Science & Technology of Jiangsu Province (BK20180533), China, to FC, and grants from the Austrian Science Fund (FWF) P25613-B20 and P25745-B20, to ISD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina S. Druzhinina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cai, F., Kubicek, C.P., Druzhinina, I.S. (2021). Genetic Transformation of Trichoderma spp.. In: Basu, C. (eds) Biofuels and Biodiesel. Methods in Molecular Biology, vol 2290. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1323-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1323-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1322-1

  • Online ISBN: 978-1-0716-1323-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics