Skip to main content

RPA-1 from Leishmania sp.: Recombinant Protein Expression and Purification, Molecular Modeling, and Molecular Dynamics Simulations Protocols

  • Protocol
  • First Online:
Single Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2281))

Abstract

RPA is a conserved heterotrimeric complex and the major single-stranded DNA (ssDNA)-binding protein heterotrimeric complex, which in eukaryotes is formed by the RPA-1, RPA-2, and RPA-3 subunits. The main structural feature of RPA is the presence of the oligonucleotide/oligosaccharide-binding fold (OB-fold) domains, responsible for ssDNA binding and protein:protein interactions. Among the RPA subunits, RPA-1 bears three of the four OB folds involved with RPA-ssDNA binding, although in some organisms RPA-2 can also bind ssDNA. The OB-fold domains are also present in telomere end-binding proteins (TEBP), essential for chromosome end protection. RPA-1 from Leishmania sp., as well as RPA-1 from trypanosomatids, a group of early-divergent protozoa, shows some structural differences compared to higher eukaryote RPA-1. Also, RPA-1 from Leishmania sp., similar to TEBPs, may exert telomeric protective functions. Remarkably, different pieces of evidence have pointed out that trypanosomatids may not have OB fold-containing TEBPs. Moreover, recent data indicate that trypanosomatid RPA-1 may be considered a TEBP since it shares with TEBPs conserved functional and structural features. However, it is still unknown whether the RPA-1 protective telomeric role is exclusive to trypanosomatids or is also present in other primitive eukaryotes. Here, we describe a protocol to obtain highly purified and biologically active Leishmania amazonensis recombinant RPA-1, and to perform molecular modeling and molecular dynamics simulations methods which could be probably applied to functional and structural studies of homologous proteins in other primitive eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  Google Scholar 

  2. Smith J, Zou H, Rothstein R (2000) Characterization of genetic interactions with RFA1: The role of RPA in DNA replication and telomere maintenance. Biochimie 82:71–78

    Article  CAS  Google Scholar 

  3. Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137

    Article  CAS  Google Scholar 

  4. Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 485:176–181

    Article  Google Scholar 

  5. Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21:1855–1863

    Article  CAS  Google Scholar 

  6. Fan J, Pavletich NP (2012) Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 26:2337–2347

    Article  CAS  Google Scholar 

  7. Binz SK, Wold MS (2008) Regulatory functions of the N-terminal domain of the 70-kDa subunit of replication protein A (RPA). J Biol Chem 283:21559–21570

    Article  CAS  Google Scholar 

  8. Mitton-Fry RM, Anderson EM, Hughes TR, Lundblad V, Wuttke DS (2002) Conserved structure for single-stranded telomeric DNA recognition. Science 296:145–147

    Article  CAS  Google Scholar 

  9. Chan SWRL, Blackburn EH (2004) Telomeres and telomerase. Philos Trans R Soc Lond B 359:109–121

    Article  CAS  Google Scholar 

  10. Rice C, Skordalakes E (2016) Structure and function of the telomeric CST complex. Comput Struct Biotechnol J 14:161–167

    Article  CAS  Google Scholar 

  11. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  Google Scholar 

  12. Dewar JM, Lydall D (2012) Similarities and differences between “uncapped” telomeres and DNA double-strand breaks. Chromosoma 12:117–130

    Article  Google Scholar 

  13. Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, Saito M, Ishikawa F (2009) RPA-like Mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36:193–206

    Article  CAS  Google Scholar 

  14. Price CM, Boltz KA, Chaiken MF, Stewart JA, Beilstein MA, Shippen DE (2010) Evolution of CST function in telomere maintenance. Cell Cycle 9:3157–3165

    Article  CAS  Google Scholar 

  15. Lewis KA, Wuttke DS (2012) Telomerase and telomere-associated proteins: Structural insights into mechanism and evolution. Structure 20:28–39

    Article  CAS  Google Scholar 

  16. Lue NF (2018) Evolving linear chromosomes and telomeres: a C-strand-centric view. Trends Biochem Sci 43:314–326

    Article  CAS  Google Scholar 

  17. Lopes AH, Souto-Padrón T, Dias FA, Gomes MT, Rodrigues GC, Zimmermann LT, Alves e Silva TL, Vermelho AB (2010) Trypanosomatids: odd organisms, devastating diseases. Open Parasitol J 4:30–59

    Article  CAS  Google Scholar 

  18. Neto JLS, Lira CBB, Giardini MA, Khater L, Perez AM, Peroni LA, dos Reis JRR, Freitas-Junior LH, Ramos CHI, Cano MIN (2007) Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA. Biochem Biophys Res Commun 358:417–423

    Article  Google Scholar 

  19. Pavani RS, Fernandes C, Perez AM, Vasconcelos EJR, Siqueira-Neto JL, Fontes MR, Cano MIN (2014) RPA-1 from Leishmania amazonensis (LaRPA-1) structurally differs from other eukaryote RPA-1 and interacts with telomeric DNA via its N-terminal OB-fold domain. FEBS Lett 588:4740–4748

    Article  CAS  Google Scholar 

  20. Pavani RS, da Silva MS, Fernandes CAH, Morini FS, Araujo CB, Fontes MR d M, Sant’Anna OA, Machado CR, Cano MI, Fragoso SP, Elias MC (2016) Replication protein A presents canonical functions and is also involved in the differentiation capacity of Trypanosoma cruzi. PLoS Negl Trop Dis 10:e0005181

    Article  Google Scholar 

  21. Da Silveira RDCV, Da Silva MS, Nunes VS, Perez AM, Cano MIN (2013) The natural absence of RPA1N domain did not impair Leishmania amazonensis RPA-1 participation in DNA damage response and telomere protection. Parasitology 140:547–559

    Article  Google Scholar 

  22. Brown GW, Melendy TE, Ray DS (1992) Conservation of structure and function of DNA replication protein A in the trypanosomatid Crithidia fasciculata. Proc Natl Acad Sci U S A 89:10227–10231

    Article  CAS  Google Scholar 

  23. Fernández MF, Castellari RR, Conte FF, Gozzo FC, Sabino AA, Pinheiro H, Novello JC, Eberlin MN, Cano MIN (2004) Identification of three proteins that associate in vitro with the Leishmania (Leishmania) amazonensis G-rich telomeric strand. Eur J Biochem 271:3050–3063

    Article  Google Scholar 

  24. Pavani RS, Vitarelli MO, Fernandes CAH, Mattioli FF, Morone M, Menezes MC, Fontes MRM, Cano MIN, Elias MC (2018) Replication protein A-1 has a preference for the telomeric G-rich sequence in Trypanosoma cruzi. J Eukaryot Microbiol 65:345–356

    Article  CAS  Google Scholar 

  25. Fernandes CAH, Morea EGO, dos Santos GA, da Silva VL, Vieira MR, Viviescas MA, Chatain J, Vadel A, Saintomé C, Fontes MRM, Cano MIN (2020) A multi-approach analysis highlights the relevance of RPA-1 as a telomere end-binding protein (TEBP) in Leishmania amazonensis. Biochim Biophys Acta Gen Subj 1864:129607

    Article  CAS  Google Scholar 

  26. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31:3375–3380

    Article  CAS  Google Scholar 

  27. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  28. The PyMol Molecular Graphics System, Version 2.0

    Google Scholar 

  29. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  31. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 27:951–960

    Article  Google Scholar 

  32. Oostenbrink C, Soares TA, Van Der Vegt NFA, Van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34:273–284

    Article  CAS  Google Scholar 

  33. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  34. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2014) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  Google Scholar 

  35. Lira CBB, Gui KE, Perez AM, da Silveira RCV, Gava CH, Ramos I, Cano MIN (2009) DNA and heparin chaperone the refolding of purified recombinant replication protein A subunit 1 from Leishmania amazonensis. Biochim Biophys Acta 1790:119–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel N. Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernandes, C.A.H., Morea, E.G.O., Cano, M.I.N. (2021). RPA-1 from Leishmania sp.: Recombinant Protein Expression and Purification, Molecular Modeling, and Molecular Dynamics Simulations Protocols. In: Oliveira, M.T. (eds) Single Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 2281. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1290-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1290-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1289-7

  • Online ISBN: 978-1-0716-1290-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics