Skip to main content

Anaerobic Stopped-Flow Spectrophotometry with Photodiode Array Detection in the Presteady State: An Application to Elucidate Oxidoreduction Mechanisms in Flavoproteins

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2280))

Abstract

Anaerobic stopped-flow (SF) spectrophotometry is a powerful biophysical tool that allows a complete kinetic characterization of protein interactions with other molecules when they are in different redox states, as well as of the redox processes consequence of such interactions. Differences in the absorption spectroscopic properties of oxidized, semiquinone and hydroquinone states of flavoproteins, as well as the appearance of transient spectroscopic features produced by the flavin cofactor during substrate binding and electron transfer processes, have made SF a suitable technique for kinetically dissecting their mechanisms of reaction. In addition, SF coupled to photodiode array detection, enables kinetic data collection in a wavelength range. When such type of data are available for a flavoprotein reaction, they allow for obtaining detailed information of individual reaction steps, including intermolecular dissociation constants as well as electron transfer rate constants. Methodologies for the mechanistic characterization of flavoproteins involved in redox processes by SF spectrophotometry are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eccleston JF, Hutchinson JP, White HD (2001) Stopped-flow techniques. In: Harding SE, Chowdhry BZ (eds) Protein-ligand interactions. Structure and spectroscopy: a practical approach. Oxford University Press, Oxford, pp 201–237

    Google Scholar 

  2. DeSa RJ, Gibson QH (1969) A practical automatic data acquisition system for stopped-flow spectrophotometry. Comput Biomed Res 2:494–505

    Article  CAS  Google Scholar 

  3. Gibson QH, Milnes L (1964) Apparatus for rapid and sensitive spectrophotometry. Biochem J 91:161–171

    Article  CAS  Google Scholar 

  4. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296

    Article  CAS  Google Scholar 

  5. Massey V (1995) Introduction: flavoprotein structure and mechanism. FASEB J 9:473–475

    Article  CAS  Google Scholar 

  6. Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17

    Article  CAS  Google Scholar 

  7. Müller F (1991) Free flavins: synthesis, chemical and physical properties. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC Press, Boca Raton, FL, pp 1–71

    Google Scholar 

  8. Walsh CT, Wencewicz TA (2013) Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat Prod Rep 30:175–200

    Article  CAS  Google Scholar 

  9. Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25:126–132

    Article  CAS  Google Scholar 

  10. Macheroux P (1999) UV-visible spectroscopy as a tool to study flavoproteins. Methods Mol Biol 131:1–7

    CAS  PubMed  Google Scholar 

  11. Massey V, Palmer G (1962) Charge transfer complexes of lipoyl dehydrogenase and free flavins. J Biol Chem 237:2347–2358

    Article  CAS  Google Scholar 

  12. Tejero J et al (2007) Catalytic mechanism of hydride transfer between NADP+/H and ferredoxin-NADP+ reductase from Anabaena PCC 7119. Arch Biochem Biophys 459:79–90

    Article  CAS  Google Scholar 

  13. Daff S (2004) An appraisal of multiple NADPH binding-site models proposed for cytochrome P450 reductase, NO synthase, and related diflavin reductase systems. Biochemistry 43:3929–3932

    Article  CAS  Google Scholar 

  14. Chapman SK, Reid GA (1999) Flavoprotein protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  15. Pimviriyakul P, Surawatanawong P, Chaiyen P (2018) Oxidative dehalogenation and denitration by a flavin-dependent monooxygenase is controlled by substrate deprotonation. Chem Sci 9:7468–7482

    Article  CAS  Google Scholar 

  16. Chaiyen P et al (2004) Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Biochemistry 43:3933–3943

    Article  CAS  Google Scholar 

  17. Batie CJ, Kamin H (1986) Association of ferredoxin-NADP+ reductase with NADP(H) specificity and oxidation-reduction properties. J Biol Chem 261:11214–11223

    Article  CAS  Google Scholar 

  18. Pollegioni L, Fukui K, Massey V (1994) Studies on the kinetic mechanism of pig kidney D-amino acid oxidase by site-directed mutagenesis of tyrosine 224 and tyrosine 228. J Biol Chem 269:31666–31673

    Article  CAS  Google Scholar 

  19. Medina M, Martínez-Júlvez M, Hurley JK, Tollin G, Gómez-Moreno C (1998) Involvement of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119. Biochemistry 37:2715–2728

    Article  CAS  Google Scholar 

  20. Batie CJ, Kamin H (1984) Electron transfer by ferredoxin:NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. J Biol Chem 259:11976–11985

    Article  CAS  Google Scholar 

  21. Gorelick RJ, Schopfer LM, Ballou DP, Massey V, Thorpe C (1985) Interflavin oxidation-reduction reactions between pig kidney general acyl-CoA dehydrogenase and electron-transferring flavoprotein. Biochemistry 24:6830–6839

    Article  CAS  Google Scholar 

  22. Reis RA, Ferreira P, Medina M, Nonato MC (2016) The mechanistic study of Leishmania major dihydro-orotate dehydrogenase based on steady- and pre-steady-state kinetic analysis. Biochem J 473:651–660

    Article  CAS  Google Scholar 

  23. Ferreira P et al (2015) Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J 282:3091–3106

    Article  CAS  Google Scholar 

  24. Seo D, Soeta T, Sakurai H, Sétif P, Sakurai T (2016) Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP(+) oxidoreductase with NADP(+)/NADPH and ferredoxin. Biochim Biophys Acta 1857:678–687

    Article  CAS  Google Scholar 

  25. Hedison TM, Hay S, Scrutton NS (2015) Real-time analysis of conformational control in electron transfer reactions of human cytochrome P450 reductase with cytochrome c. FEBS J 282:4357–4375

    Article  CAS  Google Scholar 

  26. Meints CE, Gustafsson FS, Scrutton NS, Wolthers KR (2011) Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase. Biochemistry 50:11131–11142

    Article  CAS  Google Scholar 

  27. Marshall KR et al (2005) The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J Biol Chem 280:30735–30740

    Article  CAS  Google Scholar 

  28. Belcher J et al (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem 289:6535–6550

    Article  CAS  Google Scholar 

  29. Dai Y, Haque MM, Stuehr DJ (2017) Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis. J Biol Chem 292:6753–6764

    Article  CAS  Google Scholar 

  30. Chenprakhon P, Trisrivirat D, Thotsaporn K, Sucharitakul J, Chaiyen P (2014) Control of C4a-hydroperoxyflavin protonation in the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase. Biochemistry 53:4084–4086

    Article  CAS  Google Scholar 

  31. Pennati A et al (2006) Role of the His57-Glu214 ionic couple located in the active site of Mycobacterium tuberculosis FprA. Biochemistry 45:8712–8720

    Article  CAS  Google Scholar 

  32. Argyrou A, Sun G, Palfey BA, Blanchard JS (2003) Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Biochemistry 42:2218–2228

    Article  CAS  Google Scholar 

  33. Fitzpatrick TB et al (2001) Chorismate synthase from the hyperthermophile Thermotoga maritima combines thermostability and increased rigidity with catalytic and spectral properties similar to mesophilic counterparts. J Biol Chem 276:18052–18059

    Article  CAS  Google Scholar 

  34. Fraaije MW, van den Heuvel RH, van Berkel WJ, Mattevi A (1999) Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J Biol Chem 274:35514–35520

    Article  CAS  Google Scholar 

  35. Pérez-Amigot D et al (2019) Towards the competent conformation for catalysis in the ferredoxin-NADP+ reductase from the Brucella ovis pathogen. BBA-Bioenergetics 1860:148058

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milagros Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferreira, P., Medina, M. (2021). Anaerobic Stopped-Flow Spectrophotometry with Photodiode Array Detection in the Presteady State: An Application to Elucidate Oxidoreduction Mechanisms in Flavoproteins. In: Barile, M. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 2280. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1286-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1286-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1285-9

  • Online ISBN: 978-1-0716-1286-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics