Skip to main content

Identification of Peroxynitrite by Profiling Oxidation and Nitration Products from Mitochondria-Targeted Arylboronic Acid

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2275))

Abstract

The development of boronic probes enabled reliable detection and quantitative analysis of hydrogen peroxide , other nucleophilic hydroperoxides, hypochlorite , and peroxynitrite . The major product, in which boronate moiety of the probe is replaced by the hydroxyl group, is, however, common for all those oxidants. Here, we describe how ortho-isomer of mitochondria-targeted phenylboronic acid can be used to detect and differentiate peroxynitrite-dependent and independent probe oxidation. This method highlights detection and quantification of both the major, phenolic product and the minor, peroxynitrite-specific cyclic and nitrated products of probe oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lippert AR, Van de Bittner GC, Chang CJ (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res 44:793–804

    Article  CAS  Google Scholar 

  2. Zielonka J, Sikora A, Hardy M, Joseph J, Dranka BP, Kalyanaraman B (2012) Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem Res Toxicol 25:1793–1799

    Article  CAS  Google Scholar 

  3. Sikora A, Zielonka J, Debowska K, Michalski R, Smulik-Izydorczyk R, Pieta J, Podsiadly R, Artelska A, Pierzchala K, Kalyanaraman B (2020) Boronate-based probes for biological oxidants: A novel class of molecular tools for redox biology. Front Chem 8:580899

    Google Scholar 

  4. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  Google Scholar 

  5. Cocheme HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Saeed S, Carre JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13:340–350

    Article  CAS  Google Scholar 

  6. Cocheme HM, Logan A, Prime TA, Abakumova I, Quin C, McQuaker SJ, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Hartley RC, Partridge L, Murphy MP (2012) Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat Protoc 7:946–958

    Article  CAS  Google Scholar 

  7. Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8:1249–1259

    Article  Google Scholar 

  8. Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B (2017) Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 117:10043–10120

    Article  CAS  Google Scholar 

  9. Sikora A, Zielonka J, Lopez M, Joseph J, Kalyanaraman B (2009) Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic Biol Med 47:1401–1407

    Article  CAS  Google Scholar 

  10. Sikora A, Zielonka J, Lopez M, Dybala-Defratyka A, Joseph J, Marcinek A, Kalyanaraman B (2011) Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway. Chem Res Toxicol 24:687–697

    Article  CAS  Google Scholar 

  11. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  12. Kalyanaraman B (2011) Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 39:1221–1225

    Article  CAS  Google Scholar 

  13. Zielonka J, Kalyanaraman B (2018) Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 128:3–22

    Article  CAS  Google Scholar 

  14. Zielonka J, Kalyanaraman B (2012) Methods of investigation of selected radical oxygen/nitrogen species in cell-free and cellular systems. In: Pantopoulos K, Schipper HM (eds) Principles of free radical biomedicine, vol I. Nova Science Publishers, New York, pp 201–264

    Google Scholar 

  15. Zielonka J, Sikora A, Joseph J, Kalyanaraman B (2010) Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe. J Biol Chem 285:14210–14216

    Article  CAS  Google Scholar 

  16. Michalski R, Zielonka J, Gapys E, Marcinek A, Joseph J, Kalyanaraman B (2014) Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid. J Biol Chem 289:22536–22553

    Article  CAS  Google Scholar 

  17. Truzzi DR, Augusto O (2017) Influence of CO2 on hydroperoxide metabolism. In: Vissers MC, Hampton M, Kettle AJ (eds) Hydrogen peroxide metabolism in health and disease. CRC Press, Boca Raton, FL, pp 81–99

    Google Scholar 

  18. Zielonka J, Zielonka M, Sikora A, Adamus J, Joseph J, Hardy M, Ouari O, Dranka BP, Kalyanaraman B (2012) Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J Biol Chem 287:2984–2995

    Article  CAS  Google Scholar 

  19. Sikora A, Zielonka J, Adamus J, Debski D, Dybala-Defratyka A, Michalowski B, Joseph J, Hartley RC, Murphy MP, Kalyanaraman B (2013) Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: identification of diagnostic marker products and biological implications. Chem Res Toxicol 26:856–867

    Article  CAS  Google Scholar 

  20. Zielonka J, Sikora A, Adamus J, Kalyanaraman B (2015) Detection and differentiation between peroxynitrite and hydroperoxides using mitochondria-targeted arylboronic acid. Methods Mol Biol 1264:171–181

    Article  CAS  Google Scholar 

  21. Zielonka J, Zielonka M, VerPlank L, Cheng G, Hardy M, Ouari O, Ayhan MM, Podsiadły R, Sikora A, Lambeth JD, Kalyanaraman B (2016) Mitigation of NADPH oxidase 2 activity as a strategy to inhibit peroxynitrite formation. J Biol Chem 291:7029–7044

    Google Scholar 

  22. Rios N, Radi R, Kalyanaraman B, Zielonka J (2020) Tracking isotopically labeled oxidants using boronate-based redox probes. J Biol Chem 295:6665-6676

    Google Scholar 

  23. Zielonka J, Joseph J, Sikora A, Kalyanaraman B (2013) Real-time monitoring of reactive oxygen and nitrogen species in a multiwell plate using the diagnostic marker products of specific probes. Methods Enzymol 526:145–157

    Article  CAS  Google Scholar 

  24. Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadly R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O (2018) Detection and characterization of reactive oxygen and nitrogen species in biological systems by monitoring species-specific products. Antioxid Redox Signal 28:1416–1432

    Article  CAS  Google Scholar 

  25. Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, Bennett B, Garces AM, Dias Duarte Machado LG, Thiebaut D, Ouari O, Hardy M, Zielonka J, Kalyanaraman B (2018) Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: potentials, pitfalls, and the future. J Biol Chem 293:10363–10380

    Article  CAS  Google Scholar 

  26. Morrison DE, Issa F, Bhadbhade M, Groebler L, Witting PK, Kassiou M, Rutledge PJ, Rendina LM (2010) Boronated phosphonium salts containing arylboronic acid, closo-carborane, or nido-carborane: synthesis, X-ray diffraction, in vitro cytotoxicity, and cellular uptake. J Biol Inorg Chem 15:1305–1318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01CA208648 (B.K.). JZ was supported in part by Institutional Research Grant IRG #16-183-31 from the American Cancer Society and the MCW Cancer Center. MH was supported, in part, by the French National Research Agency ANR-16-CE07-0023-01. AS was supported by Polish National Science Center within the SONATA BIS program (Grant Number 2015/18/E/ST4/00235). RP was supported by a grant from Polish National Science Centre (NCN) within the SONATA BIS 6 program (Grant no. 2016/22/E/ST4/00549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zielonka, J., Sikora, A., Podsiadly, R., Hardy, M., Kalyanaraman, B. (2021). Identification of Peroxynitrite by Profiling Oxidation and Nitration Products from Mitochondria-Targeted Arylboronic Acid . In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1262-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1261-3

  • Online ISBN: 978-1-0716-1262-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics