Skip to main content

Live-Cell Assessment of Reactive Oxygen Species Levels Using Dihydroethidine

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2275))

Abstract

Reactive oxygen species (ROS) play an important role in cellular (patho)physiology. Empirical evidence suggests that mitochondria are an important source of ROS, especially under pathological conditions. Here, we describe a method for ROS measurement using dihydroethidium (HEt) and live-cell microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FCCP:

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

HEt:

dihydroethidium

HT:

HEPES-Tris

mito-HEt:

mito-dihydroethidium

ROS:

reactive oxygen species

TPP:

triphenylphosphonium

Δψ :

mitochondrial membrane potential

References

  1. Distelmaier F, Valsecchi F, Forkink M et al (2012) Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. Antioxid Redox Signal 17:1657–1669

    Article  CAS  Google Scholar 

  2. Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440

    Article  CAS  Google Scholar 

  3. Willems PHGM, Rossignol R, Dieteren CEJ, Murphy MP, Koopman WJH (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22:207–218

    Article  CAS  Google Scholar 

  4. Murphy MP, Holmgren A, Larsson NG et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    Article  CAS  Google Scholar 

  5. Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12:1–4

    Article  CAS  Google Scholar 

  6. Tormos KV, Anso E, Hamanaka RB et al (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 14:537–544

    Article  CAS  Google Scholar 

  7. Zhou L, a Aon M, Almas T et al (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol e1000657:6

    Google Scholar 

  8. Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  9. Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  Google Scholar 

  10. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  Google Scholar 

  11. Zhao H, Joseph J, Fales HM et al (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A 102:5727–5732

    Article  CAS  Google Scholar 

  12. Xiao Y, Meierhofer D (2019) Are hydroethine-based probes reliable for reactive oxygen species detection? Antioxid Redox Signal 31:359–367

    Article  CAS  Google Scholar 

  13. Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25:826–831

    Article  CAS  Google Scholar 

  14. Ince C, Beekman RE, Verschragen G (1990) A micro-perfusion chamber for single-cell fluorescence measurements. J Immunol Methods 128:227–234

    Article  CAS  Google Scholar 

  15. Forkink M, Smeitink JAM, Brock R et al (2010) Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta 1797:1034–1044

    Article  CAS  Google Scholar 

  16. Koopman W, Verkaart S, Visch H et al (2005) Inhibition of complex I of the electron transport chain causes O2 ·−-mediated mitochondrial outgrowth. Am J Physiol Cell Physiol 288:C1440–C1450

    Article  CAS  Google Scholar 

  17. Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2008) Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Protoc 3:8–21

    Article  CAS  Google Scholar 

  18. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001

    Article  CAS  Google Scholar 

  19. Forkink M, Willems PHGM, Koopman WJH, Grefte S (2015) Chapter 15: reactive oxygen species quantification using hydroethidium. Meth Mol Biol 1264:161–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. A.S. De Jong and Dr. Marleen Forkink (Dept. of Biochemistry, Radboudumc) for performing the HEt and Mito-HEt experiments.

Potential competing interests: Werner J.H. Koopman is a scientific advisor of Khondrion. This SME had no involvement in the data collection, analysis, and interpretation; writing of the manuscript; and the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner J. H. Koopman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grefte, S., Koopman, W.J.H. (2021). Live-Cell Assessment of Reactive Oxygen Species Levels Using Dihydroethidine . In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1262-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1261-3

  • Online ISBN: 978-1-0716-1262-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics