Skip to main content

A Fluorescent Gelatin Degradation Assay to Study Melanoma Breakdown of Extracellular Matrix

  • Protocol
  • First Online:
Melanoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2265))

Abstract

In order to protrude within a dense tissue, tumor cells have to develop the ability to digest the extracellular matrix (ECM). Melanoma cells, similarly to other types of tumor cells, form invadopodia, membranous invaginations rich in filamentous actin and several other proteins including matrix metalloproteinases (MMPs). MMPs degrade ECM structural proteins such as collagens, fibronectin, or laminin. Here we describe an assay that allows the detection of gelatinase activity exhibited by tumor cells under 2D conditions and methods to present obtained data in both a quantitative and a qualitative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller AJ, Mihm MC (2006) Melanoma. N Engl J Med 355:51–65. https://doi.org/10.1056/NEJMra052166

    Article  CAS  PubMed  Google Scholar 

  2. Sibony-Benyamini H, Gil-Henn H (2012) Invadopodia: the leading force. Eur J Cell Biol 91:896–901. https://doi.org/10.1016/j.ejcb.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Quintero-Fabián S, Arreola R, Becerril-Villanueva E et al (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370. https://doi.org/10.3389/fonc.2019.01370

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bastian A, Nichita L, Zurac S (2017) Matrix metalloproteinases in melanoma with and without regression. In: Travascio F (ed) The role of matrix metalloproteinase in human body pathologies. IntechOpen, London

    Google Scholar 

  5. Breitkreutz D, Koxholt I, Thiemann K, Nischt R (2013) Skin basement membrane: the foundation of epidermal integrity-BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int 2013:179784. https://doi.org/10.1155/2013/179784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galis ZS, Sukhova GK, Libby P (1995) Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEB J 9:974–980. https://doi.org/10.1096/fasebj.9.10.7615167

    Article  CAS  PubMed  Google Scholar 

  7. Artym VV, Zhang Y, Seillier-Moiseiwitsch F et al (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66:3034–3043. https://doi.org/10.1158/0008-5472.CAN-05-2177

    Article  CAS  PubMed  Google Scholar 

  8. Forastieri H, Ingham KC (1983) Fluid-phase interaction between human plasma fibronectin and gelatin determined by fluorescence polarization assay. Arch Biochem Biophys 227:358–366. https://doi.org/10.1016/0003-9861(83)90464-2

    Article  CAS  PubMed  Google Scholar 

  9. Lu ML, McCarron RJ, Jacobson BS (1992) Initiation of HeLa cell adhesion to collagen is dependent upon collagen receptor upregulation, segregation to the basal plasma membrane, clustering and binding to the cytoskeleton. J Cell Sci 101:873–883

    PubMed  Google Scholar 

  10. Makowiecka A, Simiczyjew A, Nowak D, Mazur AJ (2016) Varying effects of EGF, HGF and TGFβ on formation of invadopodia and invasiveness of melanoma cell lines of different origin. Eur J Histochem 60:2728. https://doi.org/10.4081/ejh.2016.2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pietraszek-Gremplewicz K, Simiczyjew A, Dratkiewicz E et al (2019) Expression level of EGFR and MET receptors regulates invasiveness of melanoma cells. J Cell Mol Med 23:8453–8463. https://doi.org/10.1111/jcmm.14730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dratkiewicz E, Simiczyjew A, Pietraszek-Gremplewicz K et al (2019) Characterization of melanoma cell lines resistant to vemurafenib and evaluation of their responsiveness to EGFR- and MET-inhibitor treatment. Int J Mol Sci 21:113. https://doi.org/10.3390/ijms21010113

    Article  CAS  PubMed Central  Google Scholar 

  13. Malek N, Mrówczyńska E, Michrowska A et al (2020) Knockout of ACTB and ACTG1 with CRISPR/Cas9(D10A) technique shows that non-muscle β and γ actin are not equal in relation to human melanoma cells’ motility and focal adhesion formation. Int J Mol Sci 21:2746. https://doi.org/10.3390/ijms21082746

    Article  CAS  PubMed Central  Google Scholar 

  14. Simiczyjew A, Pietraszek-Gremplewicz K, Dratkiewicz E et al (2019) Combination of selected MET and EGFR inhibitors decreases melanoma cells’ invasive abilities. Front Pharmacol 10:1116. https://doi.org/10.3389/fphar.2019.01116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simiczyjew A, Mazur AJ, Ampe C et al (2015) Active invadopodia of mesenchymally migrating cancer cells contain both β and γ cytoplasmic actin isoforms. Exp Cell Res 339:206–219. https://doi.org/10.1016/j.yexcr.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  16. Simiczyjew A, Dratkiewicz E, Van Troys M et al (2018) Combination of EGFR inhibitor lapatinib and MET inhibitor foretinib inhibits migration of triple negative breast cancer cell lines. Cancers 10:335. https://doi.org/10.3390/cancers10090335

    Article  CAS  PubMed Central  Google Scholar 

  17. Podgórska M, Pietraszek-Gremplewicz K, Nowak D (2018) Apelin effects migration and invasion abilities of colon cancer cells. Cells 7:113. https://doi.org/10.3390/cells7080113

    Article  CAS  PubMed Central  Google Scholar 

  18. Branch KM, Hoshino D, Weaver AM (2012) Adhesion rings surround invadopodia and promote maturation. Biol Open 1:711–722. https://doi.org/10.1242/bio.20121867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Enderling H, Alexander NR, Clark ES et al (2008) Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophys J 95:2203–2218. https://doi.org/10.1529/biophysj.108.133199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  21. Díaz B (2013) Invadopodia detection and gelatin degradation assay. Bio Protoc 3:e997. https://doi.org/10.21769/BioProtoc.997

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schoumacher M, Louvard D, Vignjevic D (2011) Cytoskeleton networks in basement membrane transmigration. Eur J Cell Biol 90:93–99. https://doi.org/10.1016/j.ejcb.2010.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by National Science Centre, Poland, grant numbers 2015/17/B/NZ3/03604 (Opus 9, granted to A.J.M.) and 2016/22/E/NZ3/00654 (Sonata Bis 6, granted to A.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina J. Mazur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mazurkiewicz, E., Mrówczyńska, E., Simiczyjew, A., Nowak, D., Mazur, A.J. (2021). A Fluorescent Gelatin Degradation Assay to Study Melanoma Breakdown of Extracellular Matrix. In: Hargadon, K.M. (eds) Melanoma. Methods in Molecular Biology, vol 2265. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1205-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1205-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1204-0

  • Online ISBN: 978-1-0716-1205-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics