Skip to main content

Root System Phenotying of Soil-Grown Plants via RGB and Hyperspectral Imaging

  • Protocol
  • First Online:
Crop Breeding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2264))

Abstract

Phenotyping root systems provide essential information for plant breeding, particularly aiming for better abiotic stress resistance. Rhizobox systems provide a field-near growth environment for in situ imaging of root systems in soil. A protocol for RGB and hyperspectral imaging of rhizobox-grown plants is presented that enables gathering of root structural (morphology, architecture) as well as functional (water content, decomposition) information. The protocol exemplifies the setup of a root phenotyping platform combining low-cost RGB with advanced short-wave infrared hyperspectral imaging. For both types of imaging approach, the essential steps of an image analysis pipeline are provided to retrieve biological information on breeding-relevant traits from the imaging datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  2. Siddique KHM, Chen YL, Rengel Z (2015) Efficient root system for abiotic stress tolerance in crops. Procedia Environ Sci 29:295

    Article  Google Scholar 

  3. Nakhforoosh A, Grausgruber H, Kaul H-P, Bodner G (2014) Wheat root diversity and root functional characterization. Plant Soil 380:211–229

    Article  CAS  Google Scholar 

  4. Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, Watt M (2011) Large root systems: are they useful in adapting wheat to dry environments? Funct Plant Biol 38:347–354

    Article  PubMed  Google Scholar 

  5. Tardieu F (2011) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    Article  PubMed  Google Scholar 

  6. Bodner G, Nakhforoosh A, Kaul H-P (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442

    Article  Google Scholar 

  7. Atkinson JA, Pound MP, Bennett MJ, Wells DM (2019) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuijken RCP, van Eeuwijk FA, Marcelis LFM, Bouwmeester HJ (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66:5389–5401

    Article  CAS  PubMed  Google Scholar 

  9. Pandey P, Ge Y, Stoerger V, Schnable JC (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 8:1348

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hobley E, Steffens M, Bauke SL, Kögel-Knabner I (2018) Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  11. Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer J, Faget M, Blossfeld S, Ernst M, Dimaki C (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904

    Article  PubMed  Google Scholar 

  12. Passioura JB (2006) The perils of pot experiments. Funct Plant Biol 33:1075–1079

    Article  PubMed  Google Scholar 

  13. Guizar M (2020) Efficient subpixel image registration by cross-correlation. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation. Accessed 21 Mar 2020

  14. Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T (2013) RootNav: navigating images of complex root architectures. Plant Physiol 162:1802–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B Methodol 39:1–22

    Google Scholar 

  16. Leitner D, Felderer B, Vontobel P, Schnepf A (2014) Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol 164:24–35

    Article  CAS  PubMed  Google Scholar 

  17. Bodner G, Loiskandl W, Hartl W, Erhart E, Sobotik M (2019) Characterization of cover crop rooting types from integration of rhizobox imaging and root atlas information. Plants 8:514

    Article  PubMed Central  Google Scholar 

  18. Böhm W (1979) Methods of studying root systems. Springer, New York, pp 125–138

    Book  Google Scholar 

  19. Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience 6:gix083

    Article  Google Scholar 

  20. Esquerre C, Gowen AA, Burger J, Downey G, O’Donnell C (2012) Suppressing sample morphology effects in near infrared spectral imaging using chemometric data pre-treatments. Chemometrics Intell Lab Syst 117:129–137

    Article  CAS  Google Scholar 

  21. Kucheryavskiy S (2019). https://github.com/svkucheryavski/mdatoolsm. Accessed 21 Mar 2020

  22. Kim DM, Zhang H, Zhou H, Du T, Wu Q, Mockler TC, Berezin MY (2015) Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Sci Rep 5:15919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhattacharyya A (1946) On a measure of divergence between two multinomial populations. Sankhyā 7:401–406

    Google Scholar 

  24. ABing (2020) Spatial fuzzy clustering and level set segmentation. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/31068-spatial-fuzzy-clustering-and-level-set-segmentation. Accessed 21 Mar 2020

  25. Dirk-Jan Kroon (2020) Hessian based Frangi Vesselness filter. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter. Accessed 19 Mar 2020

  26. Bruning B, Liu H, Brien C, Berger B, Lewis M, Garnett T (2019) The development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum). Front Plant Sci 10:1380

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gioia T, Galinski A, Lenz H, Müller C, Lentz J, Heinz K, Briese C, Putz A, Fiorani F, Watt M (2017) GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply. Funct Plant Biol 44:76–93

    Article  Google Scholar 

  28. Bodner G, Nakhforoosh A, Arnold T, Leitner D (2018) Hyperspectral imaging: a novel approach for plant root phenotyping. Plant Methods 14:84

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Bodner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bodner, G., Alsalem, M., Nakhforoosh, A. (2021). Root System Phenotying of Soil-Grown Plants via RGB and Hyperspectral Imaging. In: Tripodi, P. (eds) Crop Breeding. Methods in Molecular Biology, vol 2264. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1201-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1201-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1200-2

  • Online ISBN: 978-1-0716-1201-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics