Skip to main content

Probing Protein–Membrane Interactions and Dynamics Using Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS)

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2263))

Abstract

Cellular membranes are a central hub for initiation and execution of many signaling processes. Integral to these processes being accomplished appropriately is the highly controlled recruitment and assembly of proteins at membrane surfaces. The study of the molecular mechanisms that mediate protein–membrane interactions can be facilitated by utilizing hydrogen–deuterium exchange mass spectrometry (HDX-MS). HDX-MS is a robust analytical technique that allows for the measurement of the exchange rate of backbone amide hydrogens with solvent to make inferences about protein structure and conformation. This chapter discusses the use of HDX-MS as a tool to study the conformational changes that occur within peripheral membrane proteins upon association with membrane. Particular reference will be made to the analysis of the protein kinase Akt and its activation upon binding phosphatidylinositol (3,4,5) tris-phosphate (PIP3)-containing membranes to illustrate specific methodological principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Konermann L, Pan J, Liu Y-H (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40:1224–1234

    Article  CAS  PubMed  Google Scholar 

  2. Masson GR, Jenkins ML, Burke JE (2017) An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discovery 12:981–994

    Article  CAS  Google Scholar 

  3. Vadas O, Jenkins ML, Dornan GL et al (2017) Using hydrogen-deuterium exchange mass spectrometry to examine protein-membrane interactions. Methods Enzymol 583:143–172

    Article  CAS  PubMed  Google Scholar 

  4. Deng B, Lento C, Wilson DJ (2016) Hydrogen deuterium exchange mass spectrometry in biopharmaceutical discovery and development—a review. Anal Chim Acta 940:8–20

    Article  CAS  PubMed  Google Scholar 

  5. Harrison RA, Engen JR (2016) Conformational insight into multi-protein signaling assemblies by hydrogen-deuterium exchange mass spectrometry. Curr Opin Struct Biol 41:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gallagher ES, Hudgens JW (2016) Mapping protein-ligand interactions with proteolytic fragmentation, hydrogen/deuterium exchange-mass spectrometry. Methods Enzymol 566:357–404

    Article  CAS  PubMed  Google Scholar 

  7. Guttman M, Lee KK (2016) Isotope labeling of biomolecules: structural analysis of viruses by HDX-MS. Methods Enzymol 566:405–426

    Article  CAS  PubMed  Google Scholar 

  8. Vadas O, Burke JE (2015) Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 43:773–786

    Article  CAS  PubMed  Google Scholar 

  9. Pirrone GF, Iacob RE, Engen JR (2014) Applications of hydrogen/deuterium exchange MS from 2012 to 2014. Anal Chem 87(1): 99–118

    Google Scholar 

  10. Balasubramaniam D, Komives EA (2013) Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochim Biophys Acta 1834:1202–1209

    Article  CAS  PubMed  Google Scholar 

  11. Rostislavleva K, Soler N, Ohashi Y et al (2015) Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jenkins ML, Margaria JP, Stariha JTB et al (2018) Structural determinants of Rab11 activation by the guanine nucleotide exchange factor SH3BP5. Nat Commun 9:3772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kielkopf CS, Ghosh M, Anand GS et al (2018) HDX-MS reveals orthosteric and allosteric changes in apolipoprotein-D structural dynamics upon binding of progesterone. Protein Sci 282:31068–31374

    Google Scholar 

  14. Pulkoski-Gross MJ, Jenkins ML, Truman J-P et al (2018) An intrinsic lipid-binding interface controls sphingosine kinase 1 function. J Lipid Res 59:462–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lučić I, Rathinaswamy MK, Truebestein L et al (2018) Conformational sampling of membranes by Akt controls its activation and inactivation. Proc Natl Acad Sci U S A 115:E3940–E3949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Martens C, Shekhar M, Borysik AJ et al (2018) Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat Commun 9:4151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Adhikary S, Deredge DJ, Nagarajan A et al (2017) Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer. Proc Natl Acad Sci U S A 114:E1786–E1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shukla AK, Westfield GH, Xiao K et al (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature

    Google Scholar 

  19. Mehmood S, Domene C, Forest E et al (2012) Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A 109:10832–10836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. West GM, Chien EYT, Katritch V et al (2011) Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. Structure 19:1424–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung KY, Rasmussen SGF, Liu T et al (2011) Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477:611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Chien EYT, Chalmers MJ et al (2010) Dynamics of the beta2-adrenergic G-protein coupled receptor revealed by hydrogen-deuterium exchange. Anal Chem 82:1100–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mouchlis VD, Chen Y, McCammon JA et al (2018) Membrane allostery and unique hydrophobic sites promote enzyme substrate specificity. J Am Chem Soc 140:3285–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siempelkamp BD, Rathinaswamy MK, Jenkins ML et al (2017) Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas. J Biol Chem 292:12256–12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dornan GL, Siempelkamp BD, Jenkins ML et al (2017) Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc Natl Acad Sci USA 114:1982–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masson GR, Perisic O, Burke JE et al (2016) The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity. Biochem J 473:135–144

    Article  CAS  PubMed  Google Scholar 

  27. Vadas O, Dbouk HA, Shymanets A et al (2013) Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 110:18862–18867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao J, Burke JE, Dennis EA (2013) Using hydrogen/deuterium exchange mass spectrometry to define the specific interactions of the phospholipase A2 superfamily with lipid substrates, inhibitors, and membranes. J Biol Chem 288:1806–1813

    Article  CAS  PubMed  Google Scholar 

  29. Dbouk HA, Vadas O, Shymanets A et al (2012) G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci Signal 5:ra89–ra89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Burke JE, Perisic O, Masson GR et al (2012) Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc Natl Acad Sci U S A 109:15259–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burke JE, Vadas O, Berndt A et al (2011) Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Structure 1993(19):1127–1137

    Article  CAS  Google Scholar 

  32. Hsu Y-H, Burke JE, Li S et al (2009) Localizing the membrane binding region of Group VIA Ca2+−independent phospholipase A2 using peptide amide hydrogen/deuterium exchange mass spectrometry. J Biol Chem 284:23652–23661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burke JE, Hsu Y-H, Deems RA et al (2008) A phospholipid substrate molecule residing in the membrane surface mediates opening of the lid region in group IVA cytosolic phospholipase A2. J Biochem 283:31227–31236

    CAS  Google Scholar 

  34. Burke JE, Karbarz MJ, Deems RA et al (2008) Interaction of group IA phospholipase A2 with metal ions and phospholipid vesicles probed with deuterium exchange mass spectrometry. Biochemistry 47:6451–6459

    Article  CAS  PubMed  Google Scholar 

  35. Hamuro Y (2017) Determination of equine cytochrome c backbone amide hydrogen/deuterium exchange rates by mass spectrometry using a wider time window and isotope envelope. J Am Soc Mass Spectrom 28:486–497

    Article  CAS  PubMed  Google Scholar 

  36. Guttman M, Weis DD, Engen JR et al (2013) Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra. J Am Soc Mass Spectrom 24:1906–1912

    Article  CAS  PubMed  Google Scholar 

  37. Weis DD, Wales TE, Engen JR et al (2006) Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J Am Soc Mass Spectrom 17:1498–1509

    Article  CAS  PubMed  Google Scholar 

  38. Engen JR, Wales TE (2015) Analytical aspects of hydrogen exchange mass spectrometry. Annu Rev Anal Chem 8:127–148

    Article  CAS  Google Scholar 

  39. Wales TE, Eggertson MJ, Engen JR (2013) Considerations in the analysis of hydrogen exchange mass spectrometry data. Methods Mol Biol 1007:263–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan X, Zhang H, Watson J et al (2002) Hydrogen/deuterium exchange and mass spectrometric analysis of a protein containing multiple disulfide bonds: Solution structure of recombinant macrophage colony stimulating factor-beta (rhM-CSFbeta). Protein Sci 11:2113–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connelly GP, Bai Y, Jeng MF et al (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17:87–92

    Article  CAS  PubMed  Google Scholar 

  42. Walters BT, Ricciuti A, Mayne L et al (2012) Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment. J Am Soc Mass Spectrom 23:2132–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahn J, Jung MC, Wyndham K et al (2012) Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi. Anal Chem 84:7256–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin K, Lin J, Wu W-I et al (2012) An ATP-site on-off switch that restricts phosphatase accessibility of Akt. Sci Signal 5:ra37–ra37

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Canadian Institutes of Health Research New Investigator award and Open Operating Grant CRN-142393, Cancer Research Society Operating Grants CRS-22641 and CRS-24368, Natural Sciences and Engineering Research Council of Canada Discovery Grants NSERC-2014-05218 and NSERC-2020-04241, and Michael Smith Foundation for Health Research Scholar Award 17686. The authors declare no conflicts of interest with the contents of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Burke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stariha, J.T.B., Hoffmann, R.M., Hamelin, D.J., Burke, J.E. (2021). Probing Protein–Membrane Interactions and Dynamics Using Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS). In: Daviter, T., Johnson, C.M., McLaughlin, S.H., Williams, M.A. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 2263. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1197-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1197-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1196-8

  • Online ISBN: 978-1-0716-1197-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics