Skip to main content

Released N-Glycan Analysis for Biotherapeutic Development Using Liquid Chromatography and Mass Spectrometry

  • Protocol
  • First Online:
Proteomic Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2261))

Abstract

In this chapter, we describe an LC-fluorescence (FLR)/MS-based method for released N-glycan analysis in the development of biotherapeutic proteins. The method includes enzymatic release and labeling of N-glycans with a signal-enhancing tag, LC-MS data collection, and data interpretation. Using the given protocol, up to 24 glycan samples can be prepared within 1 h, while the LC-FLR/MS data can be collected and analyzed using an established data processing method in a semi-automated manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang L, Luo S, Zhang B (2016) Glycan analysis of therapeutic glycoproteins. MAbs 8(2):205–215. https://doi.org/10.1080/19420862.2015.1117719

    Article  CAS  PubMed  Google Scholar 

  2. Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334. https://doi.org/10.1093/glycob/cwv065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pereira NA, Chan KF, Lin PC, Song Z (2018) The “less-is-more” in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 10(5):693–711. https://doi.org/10.1080/19420862.2018.1466767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740. https://doi.org/10.1074/jbc.M202069200

    Article  CAS  PubMed  Google Scholar 

  5. Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan JP, Bayer R (2012) Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. MAbs 4(4):475–487. https://doi.org/10.4161/mabs.20737

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481. https://doi.org/10.1007/s00216-010-3532-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kozak RP, Tortosa CB, Fernandes DL, Spencer DI (2015) Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry. Anal Biochem 486:38–40. https://doi.org/10.1016/j.ab.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ (2015) Rapid preparation of released N-Glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem 87(10):5401–5409. https://doi.org/10.1021/acs.analchem.5b00758

    Article  CAS  PubMed  Google Scholar 

  9. Haxo T, Jones A, Kimzey M, Dale E, Vlasenko S, Mast S (2016) Automated N-glycan sample preparation with an instant glycan labeling dye for mass spectrometry. Prozyme Application Note

    Google Scholar 

  10. Nagy G, Peng T, Pohl NLB (2017) Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates. Anal Methods 9(24):3579–3593. https://doi.org/10.1039/C7AY01094J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melmer M, Stangler T, Schiefermeier M, Brunner W, Toll H, Rupprechter A, Lindner W, Premstaller A (2010) HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals. Anal Bioanal Chem 398(2):905–914. https://doi.org/10.1007/s00216-010-3988-x

    Article  CAS  PubMed  Google Scholar 

  12. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM (2008) GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24(9):1214–1216. https://doi.org/10.1093/bioinformatics/btn090

    Article  CAS  PubMed  Google Scholar 

  13. Campbell MP, Royle L, Rudd PM (2015) GlycoBase and autoGU: resources for interpreting HPLC-glycan data. Methods Mol Biol 1273:17–28. https://doi.org/10.1007/978-1-4939-2343-4_2

    Article  CAS  PubMed  Google Scholar 

  14. Han L, Costello CE (2013) Mass spectrometry of glycans. Biochemistry (Mosc) 78(7):710–720. https://doi.org/10.1134/S0006297913070031

    Article  CAS  Google Scholar 

  15. Tsai PL, Chen SF (2017) A brief review of bioinformatics tools for glycosylation analysis by mass spectrometry. Mass Spectrom (Tokyo) 6(Spec Iss):S0064. https://doi.org/10.5702/massspectrometry.S0064

  16. Hilliard M, Alley WR Jr, McManus CA, Yu YQ, Hallinan S, Gebler J, Rudd PM (2017) Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: from sample preparation to data analysis. MAbs 9(8):1349–1359. https://doi.org/10.1080/19420862.2017.1377381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bunz SC, Rapp E, Neususs C (2013) Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal Chem 85(21):10218–10224. https://doi.org/10.1021/ac401930j

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Birdsall R, Yu YQ (2019) Increasing productivity and confidence of N-lilked glycan analysis of biosimilars using the BioAccord system. Waters Application Note

    Google Scholar 

  19. GlycoWorks RapiFluor-MS N-Glycan Kit—Automation (2017) Waters Application Note

    Google Scholar 

  20. Best Practice in the Analysis of RapiFluor-MS labeled glycans using ACQUITY QDa Detector (2016) Waters White paper

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X. (2021). Released N-Glycan Analysis for Biotherapeutic Development Using Liquid Chromatography and Mass Spectrometry. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics