Skip to main content

Regulation of MicroRNAs

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

MicroRNAs are RNAs of about 18–24 nucleotides in lengths, which are found in the small noncoding RNA class and have a crucial role in the posttranscriptional regulation of gene expression, cellular metabolic pathways, and developmental events. These small but essential molecules are first processed by Drosha and DGCR8 in the nucleus and then released into the cytoplasm, where they cleaved by Dicer to form the miRNA duplex. These duplexes are bound by the Argonaute (AGO) protein to form the RNA-induced silencing complex (RISC) in a process called RISC loading. Transcription of miRNAs, processing with Drosha and DGCR8 in the nucleus, cleavage by Dicer, binding to AGO proteins and forming RISC are the most critical steps in miRNA biogenesis. Additional molecules involved in biogenesis at these stages can enhance or inhibit these processes, which can radically change the fate of the cell. Biogenesis is regulated by many checkpoints at every step, primarily at the transcriptional level, in the nucleus, cytoplasm, with RNA regulation, RISC loading, miRNA strand selection, RNA methylation/uridylation, and turnover rate. Moreover, in recent years, different regulation mechanisms have been discovered in noncanonical Drosha or Dicer-independent pathways. This chapter seeks answers to how miRNA biogenesis and function are regulated through both canonical and non-canonical pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perron MP, Provost P (2008) Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci 13:2537–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  PubMed  Google Scholar 

  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  4. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai Y et al (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7(4):147–154

    Article  CAS  PubMed  Google Scholar 

  7. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11(7):537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  9. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pfeffer S et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269–276

    Article  CAS  PubMed  Google Scholar 

  11. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  12. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  PubMed  Google Scholar 

  13. Ozsolak F et al (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22(22):3172–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen JF et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    Article  CAS  PubMed  Google Scholar 

  16. Hwang JY et al (2014) The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die. J Mol Biol 426(20):3454–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Packer AN et al (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Visvanathan J et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    Article  CAS  PubMed  Google Scholar 

  20. Sacar Demirci MD, Yousef M, Allmer J (2019) Computational prediction of functional MicroRNA-mRNA interactions. Methods Mol Biol 1912:175–196

    Article  PubMed  CAS  Google Scholar 

  21. Kim J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-Ami O et al (2009) A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc Natl Acad Sci U S A 106(1):238–243

    Article  CAS  PubMed  Google Scholar 

  23. Zhao H et al (2009) The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113(3):505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123(7):1267–1277

    Article  CAS  PubMed  Google Scholar 

  25. Park SM et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee Y et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  28. Shiohama A et al (2003) Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun 304(1):184–190

    Article  CAS  PubMed  Google Scholar 

  29. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han J et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen TA et al (2015) Functional anatomy of the human microprocessor. Cell 161(6):1374–1387

    Article  CAS  PubMed  Google Scholar 

  32. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  33. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon SC et al (2016) Structure of human DROSHA. Cell 164(1–2):81–90

    Article  CAS  PubMed  Google Scholar 

  35. Senturia R et al (2010) Structure of the dimerization domain of DiGeorge critical region 8. Protein Sci 19(7):1354–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20(1):5–20

    Article  CAS  PubMed  Google Scholar 

  37. Auyeung VC et al (2013) Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152(4):844–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148

    Article  CAS  PubMed  Google Scholar 

  39. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529. https://doi.org/10.1073/pnas.242606799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han J et al (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136(1):75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gregory RI et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    Article  CAS  PubMed  Google Scholar 

  42. Herbert KM et al (2013) Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile. Cell Rep 5(4):1070–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hong S et al (2013) Signaling by p38 MAPK stimulates nuclear localization of the microprocessor component p68 for processing of selected primary microRNAs. Sci Signal 6(266):ra16

    Article  PubMed  CAS  Google Scholar 

  44. Tu CC et al (2015) The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage. Sci Signal 8(383):ra64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tang X et al (2011) Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS One 6(6):e20391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu C et al (2015) SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res 43(16):7945–7960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wada T, Kikuchi J, Furukawa Y (2012) Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep 13(2):142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105(29):10073–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gruber JJ et al (2009) Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell 138(2):328–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trabucchi M et al (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249):1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang CF et al (2016) Estrogen regulates miRNA expression: implication of estrogen receptor and miR-124/AKT2 in tumor growth and angiogenesis. Oncotarget 7(24):36940–36955

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sakamoto S et al (2009) The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 29(13):3754–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  CAS  PubMed  Google Scholar 

  54. Bohnsack MT et al (2002) Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J 21(22):6205–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bennasser Y et al (2011) Competition for XPO5 binding between dicer mRNA, pre-miRNA and viral RNA regulates human dicer levels. Nat Struct Mol Biol 18(3):323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun HL et al (2016) ERK activation globally downregulates miRNAs through phosphorylating Exportin-5. Cancer Cell 30(5):723–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li J et al (2018) Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Cell Death Differ 25(9):1612–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu K et al (2018) The role of Exportin-5 in MicroRNA biogenesis and cancer. Genomics Proteomics Bioinformatics 16(2):120–126

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bernstein E et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  CAS  PubMed  Google Scholar 

  60. Kanellopoulou C et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang R et al (2018) Comprehensive evolutionary analysis of the major RNA-induced silencing complex members. Sci Rep 8(1):14189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145

    Article  CAS  PubMed  Google Scholar 

  63. Park JE et al (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475(7355):201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qin H et al (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 16(3):474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsutsumi A et al (2011) Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol 18(10):1153–1158

    Article  CAS  PubMed  Google Scholar 

  66. Chendrimada TP et al (2005) TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fukunaga R et al (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151(4):912

    Article  CAS  PubMed  Google Scholar 

  68. Liu X et al (2007) Dicer-1, but not loquacious, is critical for assembly of miRNA-induced silencing complexes. RNA 13(12):2324–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee HY et al (2013) Differential roles of human dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res 41(13):6568–6576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee Y et al (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee HY, Doudna JA (2012) TRBP alters human precursor microRNA processing in vitro. RNA 18(11):2012–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hammond SM et al (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150

    Article  CAS  PubMed  Google Scholar 

  73. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284(27):17897–17901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sheu-Gruttadauria J, MacRae IJ (2017) Structural foundations of RNA silencing by Argonaute. J Mol Biol 429(17):2619–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32

    Article  CAS  PubMed  Google Scholar 

  76. Swarts DC et al (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21(9):743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Niaz S (2018) The ago protein: an overview. Biol Chem 399(6):525–547

    Google Scholar 

  78. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19(23):2837–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Su H et al (2009) Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23(3):304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zeng Y et al (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 413(3):429–436

    Article  CAS  PubMed  Google Scholar 

  82. Rudel S et al (2011) Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res 39(6):2330–2343

    Article  PubMed  CAS  Google Scholar 

  83. Horman SR et al (2013) Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol Cell 50(3):356–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bridge KS et al (2017) Argonaute utilization for miRNA silencing is determined by phosphorylation-dependent recruitment of LIM-domain-containing proteins. Cell Rep 20(1):173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang M et al (2014) Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol Cell 55(5):782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Quevillon Huberdeau M et al (2017) Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J 36(14):2088–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Golden RJ et al (2017) An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542(7640):197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qi HH et al (2008) Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455(7211):421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leung A et al (2012) Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm. RNA Biol 9(5):542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leung AK et al (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smibert P et al (2013) Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 20(7):789–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martinez NJ, Gregory RI (2013) Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19(5):605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Forstemann K et al (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130(2):287–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Czech B et al (2009) Hierarchical rules for Argonaute loading in Drosophila. Mol Cell 36(3):445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu HY et al (2009) Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics 10(413):1–11

    Google Scholar 

  96. Liu Y et al (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325(5941):750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pham JW et al (2004) A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in drosophila. Cell 117(1):83–94

    Article  CAS  PubMed  Google Scholar 

  98. Liu Q et al (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301(5641):1921–1925

    Article  CAS  PubMed  Google Scholar 

  99. Liu X et al (2012) Precursor microRNA-programmed silencing complex assembly pathways in mammals. Mol Cell 46(4):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schwarz DS et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  CAS  PubMed  Google Scholar 

  101. Matranga C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620

    Article  CAS  PubMed  Google Scholar 

  102. Mishra PJ et al (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 7(7):853–858

    Article  CAS  PubMed  Google Scholar 

  103. Jazdzewski K et al (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A 105(20):7269–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun G et al (2009) SNPs in human miRNA genes affect biogenesis and function. RNA 15(9):1640–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasquinelli AE et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89

    Article  CAS  PubMed  Google Scholar 

  106. Suh, Mi-Ra, et al., Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 2004. 15;270(2): p. 488–98

    Google Scholar 

  107. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mayr F et al (2012) The Lin28 cold-shock domain remodels pre-let-7 microRNA. Nucleic Acids Res 40(15):7492–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Heo I et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284

    Article  CAS  PubMed  Google Scholar 

  110. Faehnle CR, Walleshauser J, Joshua-Tor L (2014) Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514(7521):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Katoh T et al (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23(4):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Burns DM, D’Ambrogio A, Nottrott S, Richter JD (2011) CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Katoh T, Hojo H, Suzuki T (2015) Destabilization of microRNAs in human cells by 3′ deadenylation mediated by PARN and CUGBP1. Nucleic Acids Res 43(15):7521–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boele J et al (2014) PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A 111(31):11467–11472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brennicke A, Marchfelder A, Binder S (1999) RNA editing. FEMS Microbiol Rev 23(3):297–316

    Article  CAS  PubMed  Google Scholar 

  116. Nishikura K (2016) A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17(2):83–96

    Article  CAS  PubMed  Google Scholar 

  117. Salter JD, Bennett RP, Smith HC (2016) The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci 41(7):578–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang W et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13(1):13–21

    Article  CAS  PubMed  Google Scholar 

  119. Kawahara Y et al (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the dicer-TRBP complex. EMBO Rep 8(8):763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shoshan E et al (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 17(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xhemalce B, Robson SC, Kouzarides T (2012) Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151(2):278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ruegger S, Grosshans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37(10):436–446

    Article  CAS  PubMed  Google Scholar 

  123. Sanei M, Chen X (2015) Mechanisms of microRNA turnover. Curr Opin Plant Biol 27:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang Z et al (2011) Uracils at nucleotide position 9-11 are required for the rapid turnover of miR-29 family. Nucleic Acids Res 39(10):4387–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marcinowski L et al (2012) Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 8(2):e1002510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Heo I et al (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151(3):521–532

    Article  CAS  PubMed  Google Scholar 

  127. Jones MR et al (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11(9):1157–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321(5895):1490–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chatterjee S, Grosshans H (2009) Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461(7263):546–549

    Article  CAS  PubMed  Google Scholar 

  130. Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs--the overlooked repertoire in the dynamic microRNAome. Trends Genet 28(11):544–549

    Article  CAS  PubMed  Google Scholar 

  131. Wu H et al (2009) Alternative processing of primary microRNA transcripts by Drosha generates 5′ end variation of mature microRNA. PLoS One 4(10):e7566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Llorens F et al (2013) A highly expressed miR-101 isomiR is a functional silencing small RNA. BMC Genomics 14:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Karali M et al (2016) High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res 44(4):1525–1540

    Article  PubMed  PubMed Central  Google Scholar 

  134. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bandiera S et al (2015) miR-122--a key factor and therapeutic target in liver disease. J Hepatol 62(2):448–457

    Article  CAS  PubMed  Google Scholar 

  136. Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4(1):77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Scheel TK et al (2016) A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe 19(3):409–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328(5985):1563–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25(10):601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Foldes-Papp Z et al (2009) Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr Pharm Biotechnol 10(6):569–578

    Article  PubMed  Google Scholar 

  141. Meister G et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  CAS  PubMed  Google Scholar 

  142. Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315(5808):97–100

    Article  CAS  PubMed  Google Scholar 

  143. Liao JY et al (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 5(5):e10563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Jeffries CD, Fried HM, Perkins DO (2011) Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17(4):675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tang R et al (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22(3):504–515

    Article  CAS  PubMed  Google Scholar 

  146. Zisoulis DG et al (2012) Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486(7404):541–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sohel MH (2016) Extracellular/circulating MicroRNAs: release mechanisms, functions and challenges. Achieve Life Sci 10(2):175–186

    Article  Google Scholar 

  148. Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ahadi A et al (2016) Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci Rep 6:24922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schirle NT et al (2015) Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. elife 4:e07646

    Article  PubMed Central  CAS  Google Scholar 

  151. Nam JW et al (2014) Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 53(6):1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kedde M et al (2010) A Pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12(10):1014–1020

    Article  CAS  PubMed  Google Scholar 

  153. Min KW et al (2017) AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res 45(10):6064–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Okamura K et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Flynt AS et al (2010) MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol Cell 38(6):900–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chong MM et al (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24(17):1951–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xie M et al (2013) Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155(7):1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hasler D et al (2016) The lupus autoantigen La prevents mis-channeling of tRNA fragments into the human MicroRNA pathway. Mol Cell 63(1):110–124

    Article  CAS  PubMed  Google Scholar 

  161. Yang JS et al (2010) Conserved vertebrate mir-451 provides a platform for dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 107(34):15163–15168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoda M et al (2013) Poly(A)-specific ribonuclease mediates 3′-end trimming of Argonaute2-cleaved precursor microRNAs. Cell Rep 5(3):715–726

    Article  CAS  PubMed  Google Scholar 

  163. Slezak-Prochazka I, Kroesen BJ, Van Den Berg A (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16(6):1087–1095

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ergin, K., Çetinkaya, R. (2022). Regulation of MicroRNAs. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics