Skip to main content

Fetal Growth Plate Cartilage : Histological and Immunohistochemical Techniques

  • Protocol
  • First Online:
Chondrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2245))

Abstract

Skeletal development is a tightly regulated process that primarily occurs through two distinct mechanisms. In intramembranous ossification, mesenchymal progenitors condense and transdifferentiate directly into osteoblasts, giving rise to the flat bones of the skull. The majority of the skeleton develops through endochondral ossification, in which mesenchymal progenitors give rise to a cartilaginous template that is gradually replaced by bone. The study of these processes necessitates a suitable animal model, a requirement to which the mouse is admirably suited. Their rapid reproductive ability, developmental and physiologic similarity to humans, and easily manipulated genetics all contribute to their widespread use. Outlined here are the most common histological and immunohistochemical techniques utilized in our laboratory for the isolation and analysis of specimens from the developing murine skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karsenty G (2003) The complexities of skeletal biology. Nature 423(6937):316–318. https://doi.org/10.1038/nature01654

    Article  CAS  PubMed  Google Scholar 

  2. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937):332–336. https://doi.org/10.1038/nature01657

    Article  CAS  PubMed  Google Scholar 

  3. Michigami T (2013) Regulatory mechanisms for the development of growth plate cartilage. Cell Mol Life Sci 70(22):4213–4221. https://doi.org/10.1007/s00018-013-1346-9

    Article  CAS  PubMed  Google Scholar 

  4. Zelzer E, Olsen BR (2003) The genetic basis for skeletal diseases. Nature 423(6937):343–348. https://doi.org/10.1038/nature01659

    Article  CAS  PubMed  Google Scholar 

  5. Aigner T, Stove J (2003) Collagens—major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593

    Article  CAS  PubMed  Google Scholar 

  6. Heinegard D (2009) Fell-Muir Lecture: proteoglycans and more—from molecules to biology. Int J Exp Pathol 90(6):575–586. https://doi.org/10.1111/j.1365-2613.2009.00695.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8(6):358–366. https://doi.org/10.1038/nrrheum.2012.36

    Article  CAS  PubMed  Google Scholar 

  8. Zelzer E, Mamluk R, Ferrara N, Johnson RS, Schipani E, Olsen BR (2004) VEGFA is necessary for chondrocyte survival during bone development. Development 131(9):2161–2171. https://doi.org/10.1242/dev.01053

    Article  CAS  PubMed  Google Scholar 

  9. Yao Q, Khan MP, Merceron C, LaGory EL, Tata Z, Mangiavini L, Hu J, Vemulapalli K, Chandel NS, Giaccia AJ, Schipani E (2019) Suppressing mitochondrial respiration is critical for hypoxia tolerance in the fetal growth plate. Dev Cell 49(5):748–763.e747. https://doi.org/10.1016/j.devcel.2019.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481(7381):314–320. https://doi.org/10.1038/nature10763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262

    Article  CAS  Google Scholar 

  12. Nguyen D, Xu T (2008) The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 1(1):56–66. https://doi.org/10.1242/dmm.000232

    Article  PubMed  PubMed Central  Google Scholar 

  13. Piret SE, Thakker RV (2011) Mouse models for inherited endocrine and metabolic disorders. J Endocrinol 211(3):211–230. https://doi.org/10.1530/JOE-11-0193

    Article  CAS  PubMed  Google Scholar 

  14. Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard-O’Riley R, Wilson TL, Rankin EB, Giaccia AJ, Schipani E (2014) Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development. Dev Biol 393(1):124–136. https://doi.org/10.1016/j.ydbio.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfander D, Kobayashi T, Knight MC, Zelzer E, Chan DA, Olsen BR, Giaccia AJ, Johnson RS, Haase VH, Schipani E (2004) Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development 131(10):2497–2508. https://doi.org/10.1242/dev.01138

    Article  CAS  PubMed  Google Scholar 

  16. Provot S, Schipani E (2007) Fetal growth plate: a developmental model of cellular adaptation to hypoxia. Ann N Y Acad Sci 1117:26–39. https://doi.org/10.1196/annals.1402.076

    Article  CAS  PubMed  Google Scholar 

  17. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15(21):2865–2876. https://doi.org/10.1101/gad.934301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Titford M (2005) The long history of hematoxylin. Biotech Histochem 80(2):73–78. https://doi.org/10.1080/10520290500138372

    Article  CAS  PubMed  Google Scholar 

  19. Levdik TI (1989) Unification of the staining of histological preparations and histoautoradiograms with Harris hematoxylin. Arkh Patol 51(7):81–82

    CAS  PubMed  Google Scholar 

  20. Lindahl U, Couchman J, Kimata K, Esko JD (2015) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), pp 207–221. https://doi.org/10.1101/glycobiology.3e.017

    Chapter  Google Scholar 

  21. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501. https://doi.org/10.1083/jcb.119.3.493

    Article  CAS  PubMed  Google Scholar 

  22. Loo DT, Rillema JR (1998) Measurement of cell death. Methods Cell Biol 57:251–264. https://doi.org/10.1016/s0091-679x(08)61583-6

    Article  CAS  PubMed  Google Scholar 

  23. Ramos-Vara JA, Miller MA (2014) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry—the red, brown, and blue technique. Vet Pathol 51(1):42–87. https://doi.org/10.1177/0300985813505879

    Article  CAS  PubMed  Google Scholar 

  24. Taylor CR, Shi S-R, Barr N, Wu N (2013) Techniques of immunohistochemistry: principles, pitfalls, and standardization. Diagn Immunohistochem 2:1–42

    Google Scholar 

  25. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91(1):1–13. https://doi.org/10.1084/jem.91.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polak JM, Van Noorden S (2003) Introduction to immunocytochemistry, 3rd edn. BIOS Scientific Publishers, Oxford

    Google Scholar 

  27. Coons AH, Leduc EH, Connolly JM (1955) Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102(1):49–60. https://doi.org/10.1084/jem.102.1.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guesdon JL, Ternynck T, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27(8):1131–1139. https://doi.org/10.1177/27.8.90074

    Article  CAS  PubMed  Google Scholar 

  29. Bogen SA, Vani K, Sompuram SR (2009) Molecular mechanisms of antigen retrieval: antigen retrieval reverses steric interference caused by formalin-induced cross-links. Biotech Histochem 84(5):207–215. https://doi.org/10.3109/10520290903039078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gross AJ, Sizer IW (1959) The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem 234(6):1611–1614

    CAS  PubMed  Google Scholar 

  31. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415–2420. https://doi.org/10.1073/pnas.0712168105

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koch CJ (2002) Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol 352:3–31. https://doi.org/10.1016/s0076-6879(02)52003-6

    Article  CAS  PubMed  Google Scholar 

  33. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9(12):674–687. https://doi.org/10.1038/nrclinonc.2012.171

    Article  CAS  PubMed  Google Scholar 

  34. Kizaka-Kondoh S, Konse-Nagasawa H (2009) Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci 100(8):1366–1373. https://doi.org/10.1111/j.1349-7006.2009.01195.x

    Article  CAS  PubMed  Google Scholar 

  35. Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E (2007) HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134(21):3917–3928. https://doi.org/10.1242/dev.008441

    Article  CAS  PubMed  Google Scholar 

  36. Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, Haigh JJ, Carmeliet G, Schipani E (2012) VEGF-independent cell-autonomous functions of HIF-1alpha regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res 27(3):596–609. https://doi.org/10.1002/jbmr.1487

    Article  CAS  PubMed  Google Scholar 

  37. Provot S, Zinyk D, Gunes Y, Kathri R, Le Q, Kronenberg HM, Johnson RS, Longaker MT, Giaccia AJ, Schipani E (2007) Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development. J Cell Biol 177(3):451–464. https://doi.org/10.1083/jcb.200612023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestina Schipani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tata, Z., Merceron, C., Schipani, E. (2021). Fetal Growth Plate Cartilage : Histological and Immunohistochemical Techniques. In: Haqqi, T.M., Lefebvre, V. (eds) Chondrocytes. Methods in Molecular Biology, vol 2245. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1119-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1119-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1118-0

  • Online ISBN: 978-1-0716-1119-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics