Skip to main content

Techniques for Characterizing Cytomegalovirus-Encoded miRNAs

  • Protocol
  • First Online:
Human Cytomegaloviruses

Abstract

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to sites within the 3′ untranslated regions of messenger RNA (mRNA) transcripts. The discovery of this completely new mechanism of gene regulation necessitated the development of a variety of techniques to further characterize miRNAs, their expression, and function. In this chapter, we will discuss techniques currently used in the miRNA field to detect, express and inhibit miRNAs, as well as methods used to identify and validate their targets, specifically with respect to the miRNAs encoded by human cytomegalovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  3. Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J (2005) Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79(18):12095–12099. https://doi.org/10.1128/JVI.79.18.12095-12099.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269–276. https://doi.org/10.1038/nmeth746

    Article  CAS  PubMed  Google Scholar 

  5. Meyer C, Grey F, Kreklywich CN, Andoh TF, Tirabassi RS, Orloff SL, Streblow DN (2011) Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 85(1):378–389. https://doi.org/10.1128/JVI.01900-10

    Article  CAS  PubMed  Google Scholar 

  6. Hancock MH, Tirabassi RS, Nelson JA (2012) Rhesus cytomegalovirus encodes seventeen microRNAs that are differentially expressed in vitro and in vivo. Virology 425(2):133–142. https://doi.org/10.1016/j.virol.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  7. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174

    Article  CAS  PubMed  Google Scholar 

  8. Stark TJ, Arnold JD, Spector DH, Yeo GW (2012) High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86(1):226–235. https://doi.org/10.1128/JVI.05903-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K, Wang J, Zheng X (2014) Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 536(2):272–278. https://doi.org/10.1016/j.gene.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dolken L, Perot J, Cognat V, Alioua A, John M, Soutschek J, Ruzsics Z, Koszinowski U, Voinnet O, Pfeffer S (2007) Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81(24):13771–13782. https://doi.org/10.1128/JVI.01313-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buck AH, Santoyo-Lopez J, Robertson KA, Kumar DS, Reczko M, Ghazal P (2007) Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81(24):13761–13770. https://doi.org/10.1128/JVI.01290-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cullen BR (2011) Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 25(18):1881–1894. https://doi.org/10.1101/gad.17352611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111. https://doi.org/10.1093/nar/gkh023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144. https://doi.org/10.1093/nar/gkj112

    Article  CAS  PubMed  Google Scholar 

  16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158. https://doi.org/10.1093/nar/gkm952

    Article  CAS  PubMed  Google Scholar 

  17. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. https://doi.org/10.1093/nar/gkq1027

    Article  CAS  PubMed  Google Scholar 

  18. Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 15(23):1151–1164

    Article  Google Scholar 

  19. Chen Y, Fachko D, Ivanov NS, Skinner CM, Skalsky RL (2019) Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLoS Pathog 15(1):e1007535. https://doi.org/10.1371/journal.ppat.1007535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim S, Seo D, Kim D, Hong Y, Chang H, Baek D, Kim VN, Lee S, Ahn K (2015) Temporal landscape of MicroRNA-mediated host-virus crosstalk during productive human cytomegalovirus infection. Cell Host Microbe 17(6):838–851. https://doi.org/10.1016/j.chom.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  21. Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T, Hancock M, Landais I, Jeng S, McWeeney S, Britt W, Nelson JA (2014) Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15(3):363–373. https://doi.org/10.1016/j.chom.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Albanese M, Tagawa T, Buschle A, Hammerschmidt W (2017) MicroRNAs of Epstein-Barr virus control innate and adaptive antiviral immunity. J Virol 91(16). https://doi.org/10.1128/JVI.01667-16

  23. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43(6):892–903. https://doi.org/10.1016/j.molcel.2011.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104(49):19291–19296. https://doi.org/10.1073/pnas.0709971104

    Article  PubMed  PubMed Central  Google Scholar 

  25. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1(1):302–307. https://doi.org/10.1038/nprot.2006.47

    Article  CAS  PubMed  Google Scholar 

  26. Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S, Kroesen BJ, Kok K, van den Berg A (2009) A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 37(20):e137. https://doi.org/10.1093/nar/gkp715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13(8):1198–1204. https://doi.org/10.1261/rna.563707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43(2):162–165. https://doi.org/10.1016/j.ymeth.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471. https://doi.org/10.1016/j.molcel.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  30. Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5’UTRs. PLoS Pathog 6(6):e1000967. https://doi.org/10.1371/journal.ppat.1000967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469. https://doi.org/10.1038/nature07488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. https://doi.org/10.1016/j.cell.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41:2034. https://doi.org/10.3791/2034

    Article  CAS  Google Scholar 

  34. Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, Nusbaum JD, Feederle R, Delecluse HJ, Luftig MA, Tuschl T, Ohler U, Cullen BR (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8(1):e1002484. https://doi.org/10.1371/journal.ppat.1002484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skinner CM, Ivanov NS, Barr SA, Chen Y, Skalsky RL (2017) An Epstein-Barr virus MicroRNA blocks Interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J Virol 91(21):e00530–e00517. https://doi.org/10.1128/JVI.00530-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2011) iCLIP--transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp 50:2638. https://doi.org/10.3791/2638

    Article  CAS  Google Scholar 

  37. Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34(16):e107. https://doi.org/10.1093/nar/gkl590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tirabassi R, Hook L, Landais I, Grey F, Meyers H, Hewitt H, Nelson J (2011) Human cytomegalovirus US7 is regulated synergistically by two virally encoded microRNAs and by two distinct mechanisms. J Virol 85(22):11938–11944. https://doi.org/10.1128/JVI.05443-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95(5):2509–2514. https://doi.org/10.1073/pnas.95.5.2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. https://doi.org/10.1038/35002607

    Article  CAS  PubMed  Google Scholar 

  41. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Riley KJ, Steitz JA (2013) The "observer effect" in genome-wide surveys of protein-RNA interactions. Mol Cell 49(4):601–604. https://doi.org/10.1016/j.molcel.2013.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramanathan M, Porter DF, Khavari PA (2019) Methods to study RNA-protein interactions. Nat Methods 16(3):225–234. https://doi.org/10.1038/s41592-019-0330-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garzia A, Meyer C, Morozov P, Sajek M, Tuschl T (2017) Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods 118-119:24–40. https://doi.org/10.1016/j.ymeth.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  45. Spitzer J, Hafner M, Landthaler M, Ascano M, Farazi T, Wardle G, Nusbaum J, Khorshid M, Burger L, Zavolan M, Tuschl T (2014) PAR-CLIP (photoactivatable Ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161. https://doi.org/10.1016/B978-0-12-420120-0.00008-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, Keene JD, Ohler U (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12(8):R79. https://doi.org/10.1186/gb-2011-12-8-r79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39(Database issue):D245–D252. https://doi.org/10.1093/nar/gkq940

    Article  CAS  PubMed  Google Scholar 

  48. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39(Database issue):D202–D209. https://doi.org/10.1093/nar/gkq1056

    Article  CAS  PubMed  Google Scholar 

  49. Sievers C, Schlumpf T, Sawarkar R, Comoglio F, Paro R (2012) Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res 40(20):e160. https://doi.org/10.1093/nar/gks697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N, Landthaler M, Dieterich C (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40(Database issue):D180–D186. https://doi.org/10.1093/nar/gkr1007

    Article  CAS  PubMed  Google Scholar 

  51. Uren PJ, Bahrami-Samani E, Burns SC, Qiao M, Karginov FV, Hodges E, Hannon GJ, Sanford JR, Penalva LO, Smith AD (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28(23):3013–3020. https://doi.org/10.1093/bioinformatics/bts569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen B, Yun J, Kim MS, Mendell JT, Xie Y (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15(1):R18. https://doi.org/10.1186/gb-2014-15-1-r18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chou CH, Lin FM, Chou MT, Hsu SD, Chang TH, Weng SL, Shrestha S, Hsiao CC, Hung JH, Huang HD (2013) A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics 14(Suppl 1):S2. https://doi.org/10.1186/1471-2164-14-S1-S2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang T, Xie Y, Xiao G (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol 15(1):R11. https://doi.org/10.1186/gb-2014-15-1-r11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De S, Gorospe M (2017) Bioinformatic tools for analysis of CLIP ribonucleoprotein data. Wiley Interdiscip Rev RNA 8(4). https://doi.org/10.1002/wrna.1404

  56. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3(1):1. https://doi.org/10.1186/1758-907X-3-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21(4):235–243. https://doi.org/10.2165/00063030-200721040-00004

    Article  PubMed  Google Scholar 

  58. Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7(3):536–542. https://doi.org/10.1002/cbdv.200900343

    Article  CAS  PubMed  Google Scholar 

  59. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201. https://doi.org/10.1126/science.1178178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan H. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diggins, N.L. et al. (2021). Techniques for Characterizing Cytomegalovirus-Encoded miRNAs. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics