Skip to main content

PacBio-Based Protocol for Bacterial Genome Assembly

  • Protocol
  • First Online:
Bacterial Pangenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2242))

Abstract

Acquisition of high-quality bacterial genomes is fundamental, while having in mind investigation of subtitle intraspecies variation in addition to development of sensitive species-specific tools for detection and identification of the pathogens. In this view, Pacific Biosciences technology seems highly tempting taking into consideration over 10,000 bp length of the generated reads. In this work, we describe a bacterial genome assembly pipeline based on open-source software that might be handled also by non-bioinformaticians interested in transformation of sequencing data into reliable biological information. With the use of this method, we successfully closed six Dickeya solani genomes, while the assembly process was run just on a slightly improved desktop computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quail M, Smith ME, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341. https://doi.org/10.1186/1471-2164-13-341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  3. Korlach J, Bjornson KP, Chaudhuri BP et al (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 472:431–455. https://doi.org/10.1016/S0076-6879(10)72001-2

    Article  CAS  PubMed  Google Scholar 

  4. Liolios K, Chen I-MA, Mavromatis K et al (2010) The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 38:D346–D354. https://doi.org/10.1093/nar/gkp848

    Article  CAS  PubMed  Google Scholar 

  5. Galardini M, Biondi EG, Bazzicalupo M, Mengoni A (2011) CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol Med 6:11. https://doi.org/10.1186/1751-0473-6-11

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477. https://doi.org/10.1016/J.MIB.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  7. Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599. https://doi.org/10.1099/ijsem.0.001485

    Article  CAS  PubMed  Google Scholar 

  8. Perombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387. https://doi.org/10.1146/annurev.py.18.090180.002045

    Article  Google Scholar 

  9. Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hellas V, Pirhonen M, Tsror L, Elphinstone JG (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60:385–399. https://doi.org/10.1111/j.1365-3059.2011.02427.x

    Article  Google Scholar 

  10. Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E (2014) Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. Mol Plant-Microbe Interact 27:700–711. https://doi.org/10.1094/MPMI-09-13-0270-R

    Article  CAS  PubMed  Google Scholar 

  11. Potrykus M, Golanowska M, Sledz W, Zoledowska S, Motyka A, Kołodziejska A, Butrymowicz J, Lojkowska E (2016) Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis 100:408–417. https://doi.org/10.1094/PDIS-04-15-0439-RE

    Article  CAS  PubMed  Google Scholar 

  12. Zoledowska S, Motyka A, Zukowska D, Sledz W, Lojkowska E (2018) Population structure and biodiversity of Pectobacterium parmentieri isolated from potato fields in temperate climate. Plant Dis 102:154–164. https://doi.org/10.1094/PDIS-05-17-0761-RE

    Article  PubMed  Google Scholar 

  13. Zoledowska S, Motyka-Pomagruk A, Sledz W, Lojkowska E (2018) High genomic variability in the plant pathogenic bacterium Pectobacterium parmenieri deciphered from de novo assembled complete genomes. BMC Genomics 19:751. https://doi.org/10.1186/s12864-018-5140-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Golanowska M, Potrykus M, Motyka-Pomagruk A, Kabza M, Bacci G, Galardini M, Bazzicalupo M, Makalowska I, Smalla K, Mengoni A, Hugouvieux-Cotte-Pattat N, Lojkowska E (2018) Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species. Front Microbiol 9:1940. https://doi.org/10.3389/fmicb.2018.01940

    Article  PubMed  PubMed Central  Google Scholar 

  15. Golanowska M, Galardini M, Bazzicalupo M, Hugouvieux-Cotte-Pattat N, Mengoni A, Potrykus M, Slawiak M, Lojkowska E (2015) Draft genome sequence of a highly virulent strain of the plant pathogen Dickeya solani, IFB0099. Genome Announc 3:e00109–e00115. https://doi.org/10.1128/genomeA.00109-15

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bacci G, Bazzicalupo M, Benedetti A, Mengoni A (2014) StreamingTrim 1.0: a Java software for dynamic trimming of 16S rRNA sequence data from metagenetic studies. Mol Ecol Resour 14:426–434. https://doi.org/10.1111/1755-0998.12187

    Article  CAS  PubMed  Google Scholar 

  17. Koren S, Schatz MC, Walenz BP et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700. https://doi.org/10.1038/nbt.2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  19. Slawiak M, Łojkowska E, van der Wolf JM (2009) First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathol 58:794–794. https://doi.org/10.1111/j.1365-3059.2009.02028.x

    Article  Google Scholar 

  20. Slawiak M, van Beckhoven JRCM, Speksnijder AGCL et al (2009) Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol 125:245–261. https://doi.org/10.1007/s10658-009-9479-2

    Article  Google Scholar 

  21. Golanowska M, Kielar J, Lojkowska E (2017) The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. Eur J Plant Pathol 147:803–817. https://doi.org/10.1007/s10658-016-1044-1

    Article  Google Scholar 

  22. Degefu Y, Potrykus M, Golanowska M, Virtanen E, Lojkowska E (2013) A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Ann Appl Biol 162:231–241. https://doi.org/10.1111/aab.12020

    Article  CAS  Google Scholar 

  23. Motyka-Pomagruk A (2019) Genotypic and phenotypic characterization of bacteria from Dickeya solani species and development of novel control methods against phytopathogens. PhD thesis, University of Gdańsk

    Google Scholar 

  24. Koren S, Walenz BP, Berlin K et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chin CS, Alexander DH, Marks P et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474

    Article  CAS  PubMed  Google Scholar 

  26. Pacific Biosciences P/N 000-710-821-13 (2014) Template preparation and sequencing guide. Pacific Biosciences, Menlo Park, CA

    Google Scholar 

  27. Pacific Biosciences 100-338-500-01 (2014) Introduction to SMRTbell™ template preparation. Pacific Biosciences, Menlo Park, CA

    Google Scholar 

  28. Li H, Shahriari AR, Wysoker A (2009) Durbin R; 1000 genome project data processing subgroup. The sequence alignment/MAP format and samtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All sequencing and comparative genomics research tasks were conducted thanks to founding from National Science Centre in Poland via 2014/14/M/NZ8/00501 granted to E.L. A.M.P. is supported from National Science Centre in Poland via 2016/21/N/NZ1/02783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Lojkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Motyka-Pomagruk, A., Zoledowska, S., Kabza, M., Lojkowska, E. (2021). PacBio-Based Protocol for Bacterial Genome Assembly. In: Mengoni, A., Bacci, G., Fondi, M. (eds) Bacterial Pangenomics. Methods in Molecular Biology, vol 2242. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1099-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1099-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1098-5

  • Online ISBN: 978-1-0716-1099-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics