Skip to main content

Molecular Biology of Eosinophils: Introduction

  • Protocol
  • First Online:
Eosinophils

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2241))

Abstract

The eosinophil is an enigmatic cell with a continuing ability to fascinate. A considerable history of research endeavor on eosinophil biology stretches from the present time back to the nineteenth century. Perhaps one of the most fascinating aspects of the eosinophil is how accumulating knowledge has changed the perception of its function from passive bystander, modulator of inflammation, to potent effector cell loaded with histotoxic substances through to more recent recognition that it can act as both a positive and negative regulator of complex events in both innate and adaptive immunity. This book consists of chapters written by experts in the field of eosinophil biology that provide comprehensive clearly written protocols for techniques designed to underpin research into the function of the eosinophil in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ortega HG, Liu MC, Pavord ID et al (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371(13):1198–1207

    PubMed  Google Scholar 

  2. Nair P, Pizzichini MM, Kjarsgaard M et al (2013) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 360(10):985–993

    Google Scholar 

  3. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13(1):9–22

    CAS  PubMed  Google Scholar 

  4. Walsh GM (2018) Reslizumab in the treatment of severe eosinophilic asthma: an update. Immunotherapy 10(8):695–698. https://doi.org/10.2217/imt-2017-0176

    Article  CAS  PubMed  Google Scholar 

  5. Bousquet J, Chanez P, Lacoste JY et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323(15):1033–1039

    CAS  PubMed  Google Scholar 

  6. Walker C, Kaegi MK, Braun P, Blaser K (1991) Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol 88(6):935–942

    CAS  PubMed  Google Scholar 

  7. Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 5:570

    PubMed  PubMed Central  Google Scholar 

  8. Nissim Ben Efraim AH, Levi-Schaffer F (2008) Tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis 2(3):163–171

    CAS  PubMed  Google Scholar 

  9. Akuthota P, Wang H, Weller PF (2010) Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr Opin Allergy Clin Immunol 10(1):14–19

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Farhan RK, Vickers MA, Ghaemmaghami AM, Hall AM, Barker RN, Walsh GM (2016) Effective antigen presentation to helper T cells by human eosinophils. Immunology 149(4):413–422. https://doi.org/10.1111/imm.12658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenberg HF, Phipps S, Foster PS (2007) Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 119(6):1303–1310. quiz 1311-1302

    CAS  PubMed  Google Scholar 

  12. Walsh GM (2010) Antagonism of eosinophil accumulation in asthma. Recent Patents Inflamm Allergy Drug Discov 4(3):210–213

    CAS  Google Scholar 

  13. Matsumoto K, Bochner BS (2013) Adhesion molecules. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, pp 131–139

    Google Scholar 

  14. Wu P, Mitchell S, Walsh GM (2005) A new antihistamine levocetirizine inhibits eosinophil adhesion to vascular cell adhesion molecule-1 under flow conditions. Clin Exp Allergy 35(8):1073–1079

    CAS  PubMed  Google Scholar 

  15. Robinson AJ, Kashanin D, O’Dowd F, Williams V, Walsh GM (2008) Montelukast inhibition of resting and GM-CSF-stimulated eosinophil adhesion to VCAM-1 under flow conditions appears independent of cysLT(1)R antagonism. J Leukoc Biol 83(6):1522–1529

    CAS  PubMed  Google Scholar 

  16. Robinson AJ, Kashanin D, O’Dowd F, Fitzgerald K, Williams V, Walsh GM (2009) Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin Exp Allergy 39(12):1866–1874

    CAS  PubMed  Google Scholar 

  17. Walsh GM (2013) Eosinophil apoptosis and clearance in asthma. J Cell Death 6:17–25

    PubMed  PubMed Central  Google Scholar 

  18. Gounni AS, Gregory B, Nutku E et al (2000) Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96(6):2163–2171

    CAS  PubMed  Google Scholar 

  19. Esnault S, Kelly EA (2016) Essential mechanisms of differential activation of eosinophils by IL-3 compared to GM-CSF and IL-5. Crit Rev Immunol 36(5):429–444

    PubMed  PubMed Central  Google Scholar 

  20. Leung DY (1998) Molecular basis of allergic diseases. Mol Genet Metab 63(3):157–167

    CAS  PubMed  Google Scholar 

  21. Cheung PF, Wong CK, Ip WK, Lam CW (2006) IL-25 regulates the expression of adhesion molecules on eosinophils: mechanism of eosinophilia in allergic inflammation. Allergy 61(7):878–885

    CAS  PubMed  Google Scholar 

  22. Suzukawa M, Koketsu R, Iikura M (2008) Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab Investig 88(11):1245–1253

    CAS  PubMed  Google Scholar 

  23. Wong CK, Hu S, Cheung PF, Lam CW (2010) Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol 43(3):305–315

    CAS  PubMed  Google Scholar 

  24. Anwar AR, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177(3):839–843

    CAS  PubMed  Google Scholar 

  25. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38(5):709–750

    CAS  PubMed  Google Scholar 

  26. Dvorak AM, Furitsu T, Letourneau L, Ishizaka T, Ackerman SJ (1991) Mature eosinophils stimulated to develop in human cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. Part I Piecemeal degranulation of specific granules and distribution of Charcot-Leyden crystal protein. Am J Pathol 138(1):69–82

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Spencer LA, Bonjour K, Melo RC, Weller PF (2014) Eosinophil secretion of granule-derived cytokines. Front Immunol 5:496

    PubMed  PubMed Central  Google Scholar 

  28. Peters MS, Rodriguez M, Gleich GJ (1986) Localization of human eosinophil granule major basic protein, eosinophil cationic protein and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Investig 54(6):656–662

    CAS  PubMed  Google Scholar 

  29. Lewis DM, Lewis JC, Loegering DA, Gleich GJ (1978) Localization of the guinea pig eosinophil major basic protein to the core of the granule. J Cell Biol 77(3):702–713

    CAS  PubMed  Google Scholar 

  30. Lacy P, Moqbel R (2013) Signaling and degranulation. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, pp 206–219

    Google Scholar 

  31. Lacy P, Nair P (2019) The human eosinophil. In: Greer JP, Rodgers GM, Glader B, Arber DA, Means RT, List AF, Appelbaum FR, Dispenzieri A, Fehniger TA (eds) Wintrobe’s clinical hematology. Wolters Kluwer, Philadelphia, PA, pp 167–190

    Google Scholar 

  32. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118(1):9–18

    CAS  PubMed  Google Scholar 

  33. Erjefalt JS, Persson CG (2000) New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med 161(6):2074–2085

    CAS  PubMed  Google Scholar 

  34. Saffari H, Hoffman LH, Peterson KA et al (2014) Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J Allergy Clin Immunol 133(6):1728–1734

    CAS  PubMed  Google Scholar 

  35. Radonjic-Hoesli S, Wang X, de Graauw E et al (2017) Adhesion-induced eosinophil cytolysis requires the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J Allergy Clin Immunol 140(6):1632–1642

    CAS  PubMed  Google Scholar 

  36. Driss V, Legrand F, Capron M (2013) Eosinophil receptor profile. In: Lee JJ, Rosenberg HF (eds) Eosinophils in heatlh and disease. Elsevier, New York, pp 30–38

    Google Scholar 

  37. Kita H (2013) Antifungal immunity by Eosinophils: mechanisms and implications in human diseases. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, pp 291–299

    Google Scholar 

  38. Adamko DJ, Wu Y, Gleich GJ, Lacy P, Moqbel R (2004) The induction of eosinophil peroxidase release: improved methods of measurement and stimulation. J Immunol Methods 291(1–2):101–108

    CAS  PubMed  Google Scholar 

  39. Melo RC, Perez SA, Spencer LA, Dvorak AM, Weller PF (2005) Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6(10):866–879

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Melo RC, Weller PF (2010) Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 25(10):1341–1354

    PubMed  PubMed Central  Google Scholar 

  41. Lacy P, Mahmudi-Azer S, Bablitz B et al (1999) Rapid mobilization of intracellularly stored RANTES in response to interferon-gamma in human eosinophils. Blood 94(1):23–32

    CAS  PubMed  Google Scholar 

  42. Spencer LA, Melo RC, Perez SA, Bafford SP, Dvorak AM, Weller PF (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci U S A 103(9):3333–3338

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lacy P, Willetts L, Kim JD et al (2011) Agonist activation of f-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 156(2):137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lacy P, Logan MR, Bablitz B, Moqbel R (2001) Fusion protein vesicle-associated membrane protein 2 is implicated in IFN-gamma-induced piecemeal degranulation in human eosinophils from atopic individuals. J Allergy Clin Immunol 107(4):671–678

    CAS  PubMed  Google Scholar 

  45. Logan MR, Lacy P, Bablitz B, Moqbel R (2002) Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis. J Allergy Clin Immunol 109(2):299–306

    CAS  PubMed  Google Scholar 

  46. Logan MR, Lacy P, Odemuyiwa SO et al (2006) A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy 61(6):777–784

    CAS  PubMed  Google Scholar 

  47. Kim JD, Willetts L, Ochkur S et al (2013) An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 94(6):1265–1274

    PubMed  PubMed Central  Google Scholar 

  48. Willetts L, Felix LC, Jacobsen EA et al (2018) Vesicle-associated membrane protein 7-mediated eosinophil degranulation promotes allergic airway inflammation in mice. Commun Biol 1:83

    PubMed  PubMed Central  Google Scholar 

  49. McLaren DJ, Mackenzie CD, Ramalho-Pinto FJ (1977) Ultrastructural observations on the in vitro interaction between rat eosinophils and some parasitic helminths (Schistosoma mansoni, Trichinella spiralis and Nippostrongylus brasiliensis). Clin Exp Immunol 30(1):105–118

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gentil K, Hoerauf A, Layland LE (2013) Eosinophil-mediated responses toward Helminths. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, pp 303–312

    Google Scholar 

  51. Foster PS, Rosenberg HF, Asquith KL et al (2008) Targeting eosinophils in asthma. Curr Mol Med 8:585–590

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Walsh GM (2015) Mepolizumab based therapy in asthma – an update. Curr Opin Allergy Clin Immunol 15:392–396

    CAS  PubMed  Google Scholar 

  53. Cushen B, Menzies-Gow A (2020) Benralizumab: an updated treatment of eosinophilic asthma. Expert Rev Respir Med 2020(17):1–10

    Google Scholar 

  54. Figueiredo RT, Neves JS (2018) Eosinophils in fungal diseases: An overview. J Leukoc Biol 104(1):49–60. https://doi.org/10.1002/JLB.4MR1117-473R

    Article  CAS  PubMed  Google Scholar 

  55. Nutman TB (2013) Immune responses in Helminth infections. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, pp 312–320

    Google Scholar 

  56. Rosenberg HF, Dyer KD, Domachowske JB (2013) Interactions of eosinophils with respiratory virus pathogens. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, New York, pp 281–290

    Google Scholar 

  57. Yousefi S, Simon D, Simon HU (2012) Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr Opin Immunol 24(6):736–739

    CAS  PubMed  Google Scholar 

  58. Swartz JM, Dyer KD, Cheever AW et al (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–2427

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang L, Appleton JA (2016) Eosinophils in helminth infection: defenders and dupes. Trends Parasitol 32(10):798–807

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Percopo CM, Dyer KD, Ochkur SI et al (2014) Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 30(5):123, 743–152

    Google Scholar 

  61. Samarasinghe AE, Melo RC, Duan S et al (2017) Eosinophils promote antiviral immunity in mice infected with influenza A virus. J Immunol 198(8):3214–3226

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenberg HF, Masterson JC, Furuta GT (2016) Eosinophils, probiotics, and the microbiome. J Leukoc Biol 100(5):881–888

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Evans RL, Nials AT, Knowles RG et al (2012) A comparison of antiasthma drugs between acute and chronic ovalbumin-challenged Guinea-pig models of asthma. Pulm Pharmacol Ther 25:453–464

    CAS  PubMed  Google Scholar 

  64. Rosenberg HF, Druey KM (2018) Modelling asthma: Pitfalls, promises, and the road ahead. J Leuk Biol 104(1):41–48

    CAS  Google Scholar 

  65. Lee JJ, Jacobsen EA, Ochkur SI et al (2012) Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J Allergy Clin Immunol 130:572–584

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee NA (2012) Mouse models manipulating eosinophilopoiesis. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Elsevier, Waltham, MA, pp 111–120

    Google Scholar 

  67. Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172:1425–1431

    CAS  PubMed  Google Scholar 

  68. Ochkur SI, Jacobsen EA, Protheroe CA et al (2007) Co-expression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 78:7879–7889

    Google Scholar 

  69. Kopf M, Brombacher F, Hodgkin PD et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24

    CAS  PubMed  Google Scholar 

  70. Yoshida T, Ikuta K, Sugaya H et al (1996) Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4:483–494

    CAS  PubMed  Google Scholar 

  71. Yu C, Cantor AB, Yang H et al (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195:1387–1395

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nei Y, Obata-Ninomiya K, Tsutsui H et al (2013) GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 110:18620–18625

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee JJ, Dimina D, Macias MP et al (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–1776

    CAS  PubMed  Google Scholar 

  74. Jacobsen EA, Lesuer WE, Willetts L (2014) Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69(3):315–327

    CAS  PubMed  Google Scholar 

  75. Doyle AD, Jacobsen EA, Ochkur SI et al (2013) Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J Leuk Biol 94:17–24

    CAS  Google Scholar 

  76. O’Sullivan JA, Wei Y, Carroll DJ et al (2018) Frontline Science: characterization of a novel mouse strain expressing human Siglec-8 only on eosinophils. J Leukoc Biol 104(1):11–19

    PubMed  Google Scholar 

  77. Rosenberg HF (2013) Mouse eosinophils expressing Cre recombinase: endless “flox”ibilities. J Leuk Biol 94:3–4

    CAS  Google Scholar 

  78. Lee JJ, Jacobsen EA, McGarry MP et al (2010) Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy 40:563–575

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Akuthota P, Wang HB, Spencer LA, Weller PF (2008) Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy 38:1254–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang HB, Ghiran I, Matthae K, Weller PF (2007) Airway eosinophils: allergic inflammation recruited professional antigen presenting cells. J Immunol 179:7585–7592

    CAS  PubMed  Google Scholar 

  81. Wang HB (2008) Weller PF (2008) pivotal advance: eosinophils mediate early alum adjuvant elicited B cell priming and IgM production. J Leuk Biol 83:817–821

    CAS  Google Scholar 

  82. Chu VT, Fröhlich A, Steinhauser G et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159

    CAS  PubMed  Google Scholar 

  83. Wu D, Molofsky AB, Liang HE et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang D, Chen Q, Su SB et al (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Minai-Fleminger Y, Levi-Schaffer F (2009) Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 58:631–638

    CAS  PubMed  Google Scholar 

  86. Haskell MD, Moy JN, Gleich GJ, Thomas LL (1995) Analysis of signalling events associated with activation of neutrophil superoxide anion production by eosinophil granule major basic protein. Blood 86:4627–4637

    CAS  PubMed  Google Scholar 

  87. Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37

    CAS  PubMed  Google Scholar 

  88. Fabre V, Beiting DP, Bliss SK et al (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583

    CAS  PubMed  Google Scholar 

  89. Gebreselassie NG, Moorhead AR, Fabre V (2012) Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol 188:417–425

    CAS  PubMed  Google Scholar 

  90. Noor Z, Watanabe K, Abhyankar MM et al (2017, 2017) Role of eosinophils and tumor necrosis factor alpha in interleukin-25-mediated protection from amoebic colitis. mBio 8(1):e02329

    Google Scholar 

  91. Buonomo EL, Cowardin CA, Wilson MG et al (2016) Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep 16(2):432–443

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Reichman H, Karo-Atar D, Munitz A (2016) Emerging roles for eosinophils in the tumor microenvironment. Trends Cancer 2(11):664–675

    PubMed  Google Scholar 

  93. Mesnil C, Raulier S, Paulissen G et al (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126(9):3279–3295

    PubMed  PubMed Central  Google Scholar 

  94. Weller PF, Spencer LA (2017) Functions of tissue-resident eosinophils. Nat Rev Immunol 17(12):746–760

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mehta P, Furuta GT (2015) Eosinophils in gastrointestinal disorders: eosinophilic gastrointestinal diseases, celiac disease, inflammatory bowel diseases and parasitic infections. Immunol Allergy Clin N Am 35(3):413–437

    Google Scholar 

  96. Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antivir Res 83:1–9

    CAS  PubMed  Google Scholar 

  97. Yousefi S, Gold JA, Andina N et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    CAS  PubMed  Google Scholar 

  98. Linch SN, Danielson ET, Kelly AM et al (2012) Interleukin 5 is protective during sepsis in an eosinophil-independent manner. Am J Respir Crit Care Med 186:246–254

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Herbst T, Sichelstiel A, Schar C et al (2011) Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 184:198–205

    CAS  PubMed  Google Scholar 

  100. Bisgaard H, Li N, Bonnelykke K (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652

    PubMed  Google Scholar 

  101. Drake MG, Lebold KM, Roth-Carter QR et al (2018) Eosinophil and airway nerve interactions in asthma. J Leuk Biol 104(1):61–67

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by funds from NIAID DIR AI000941 (HFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry M. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lacy, P., Rosenberg, H.F., Walsh, G.M. (2021). Molecular Biology of Eosinophils: Introduction. In: Walsh, G.M. (eds) Eosinophils. Methods in Molecular Biology, vol 2241. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1095-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1095-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1094-7

  • Online ISBN: 978-1-0716-1095-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics