Skip to main content

Surface Modification of Glass Slides with Aminosilanes for Microarray Use

  • Protocol
  • First Online:
Antibody Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2237))

  • 1318 Accesses

Abstract

Glass serves as the solid support for a variety of array types; however, the chemical nature of glass makes it unsuitable for high-affinity binding to most biomolecules. In this chapter, we describe the activation and surface coating of glass with silane, a wide-ranging group of molecules that can covalently attach to the surface of glass and modify it with a variety of functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sutandy F, Reymond X et al (2013) Overview of protein microarrays. Curr Protoc Prot Sci Chapter 27:Unit 27.1. https://doi.org/10.1002/0471140864.ps2701s72

  2. Weisheng B et al (2019) Discovering endometriosis biomarkers with multiplex cytokine arrays. Clin Proteomics 16:28. https://doi.org/10.1186/s12014-019-9248-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benachour H et al (2018) Vitronectin (Vn) glycosylation patterned by lectin affinity assays—a potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn. J Mol Recognit 31(5):e2690. https://doi.org/10.1002/jmr.2690

    Article  CAS  PubMed  Google Scholar 

  4. McCombs JE et al (2016) Glycan specificity of neuraminidases determined in microarray format. Carbohydr Res 428:31–40. https://doi.org/10.1016/j.carres.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bradner JE et al (2006) A robust small-molecule microarray platform for screening cell lysates. Chem Biol 13(5):493–504. https://doi.org/10.1016/j.chembiol.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Bumgarner R (2013) DNA microarrays: types, applications and their future. In: Ausubel FM et al (eds) Current protocols in molecular biology, vol 22. Wiley, New York, p Unit 22.1. https://doi.org/10.1002/0471142727.mb2201s101

    Chapter  Google Scholar 

  7. Elshal MF, McCoy JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38(4):317–323. https://doi.org/10.1016/j.ymeth.2005.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson MS (2000) Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76(21):3130–3132. https://doi.org/10.1063/1.126546

    Article  CAS  Google Scholar 

  9. Ban T, Goto Y (2006) Direct observation of amyloid growth monitored by total internal reflection fluorescence microscopy. In: Methods in enzymology, vol 413. Academic Press, New York, pp 91–102. https://doi.org/10.1016/S0076-6879(06)13005-0

    Chapter  Google Scholar 

  10. Wu Y-Q et al (2002) Effect of glass additives on the strength and toughness of polycrystalline alumina. J Eur Ceram Soc 22(2):159–164. https://doi.org/10.1016/S0955-2219(01)00253-9

    Article  CAS  Google Scholar 

  11. Fujimoto Y et al (2007) Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass. J Mater Res 22(3):565–568. https://doi.org/10.1557/jmr.2007.0073

    Article  CAS  Google Scholar 

  12. Curran JM et al (2005) Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26(34):7057–7067. https://doi.org/10.1016/j.biomaterials.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  13. Rogers Y-H et al (1999) Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal Biochem 266(1):23–30. https://doi.org/10.1006/abio.1998.2857

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Stuart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stuart, C. (2021). Surface Modification of Glass Slides with Aminosilanes for Microarray Use. In: Whittaker, K.C., Huang, RP. (eds) Antibody Arrays. Methods in Molecular Biology, vol 2237. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1064-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1064-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1063-3

  • Online ISBN: 978-1-0716-1064-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics