Skip to main content

Methods to Identify Soil Microbial Bioindicators of Sustainable Management of Bioenergy Crops

  • Protocol
  • First Online:
The Plant Microbiome

Abstract

Here we describe a suite of methods to identify potential taxonomic and functional soil microbial indicators of soil quality and plant health in biofuel crops in various areas and land types. This approach draws on tools to assess microbial diversity, greenhouse gas fluxes, and soil physicochemical properties in bioenergy cropping systems. Integrative statistical models are then used to identify potential microbial indicators for sustainable management of bioenergy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Ensas JD, Trevors JT, Rosado AS et al (2019) Modern soil microbiology, 3rd edn. CRC Press Taylor & Francis Group, Portland, OR

    Google Scholar 

  2. Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:2–54

    Google Scholar 

  3. Karlen DL, Mausbach MJ, Doran JW et al (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  4. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  PubMed  Google Scholar 

  5. Muyzer G (1999) Genetic fingerprinting of microbial communities – present status and future perspectives. Methods of microbial community analysis. Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada

    Google Scholar 

  6. Smit E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23:249–261

    Article  CAS  Google Scholar 

  7. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ikeda H, Ishikawa J, Hanamoto A et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  9. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banowetz GM, Whittaker GW, Dierksen KP et al (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 3:133–140

    Article  CAS  Google Scholar 

  11. Desantis TZ, Brodie EL, Moberg JP et al (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  CAS  PubMed  Google Scholar 

  12. Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    Article  CAS  Google Scholar 

  13. He Z, Gentry TJ, Schadt CW et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  14. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  15. Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendes LW, Braga LPP, Navarrete AA et al (2017) Using metagenomics to connect microbial community biodiversity and functions. Curr Issues Mol Biol 24:103–118

    Article  PubMed  Google Scholar 

  17. Nazaries L, Pan Y, Bodrossy L et al (2013) Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol 79(13):4031–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Navarrete AA, Diniz TR, Braga LPP et al (2015) Multi-analytical approach reveals potential microbial indicators in soil for sugarcane model systems. PLoS One 10(6):e0129765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Navarrete AA, Mellis EV, Escalas A et al (2017) Zinc concentration affects the functional groups of microbial communities in sugarcane-cultivated soil. Agric Ecosyst Environ 236:187–197

    Article  CAS  Google Scholar 

  20. Soares JR, Cassman N, Kielak AM et al (2016) Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil. Sci Rep 6:e30349

    Article  CAS  Google Scholar 

  21. Berendsen RL, Vismans G, Yu K et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendes LW, Raaijmakers JM, Hollander M et al (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    Article  PubMed  Google Scholar 

  23. Mendes LW, Mendes R, Raaijmakers JM et al (2018) Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J 12:3038–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Jousset A, de Boer W, Carrión VJ et al (2019) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13(3):738–751

    Article  CAS  PubMed  Google Scholar 

  25. Souza RSC, Okura VK, Armanhi JSL et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  27. Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  28. de Santi Ferrara FI, Oliveira ZM, Gonzales HHS et al (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417

    Article  CAS  Google Scholar 

  29. Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:1–6

    Article  Google Scholar 

  30. Schlemper TR, Leite MFA, Lucheta AR et al (2017) Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol Ecol 93(8):096

    Article  CAS  Google Scholar 

  31. Schlemper TR, van Veen JA, Kuramae EE (2018) Co-variation of bacterial and fungal communities in different sorghum cultivars and growth stages is soil dependent. Microb Ecol 76(1):205–214

    Article  PubMed  Google Scholar 

  32. da Silveira APD, Iório RDPFI, Marcos FCC et al (2019) Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Anton Leeuw Int J G 112(2):283–295

    Article  CAS  Google Scholar 

  33. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  CAS  PubMed  Google Scholar 

  34. McPherson MR, Wang P, Marsh EL et al (2018) Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. J Vis Exp 137:e57932

    Google Scholar 

  35. Robe P, Nalin R, Capellano C et al (2013) Extraction of DNA from soil. Eur J Soil Biol 39(4):183–190

    Article  CAS  Google Scholar 

  36. Asuming-Brempong S (2012) Microarray technology and its applicability in soil science - a short review. Open J Soil Sci 2:333–340

    Article  CAS  Google Scholar 

  37. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8

    Article  CAS  PubMed  Google Scholar 

  38. Araújo ASF (2010) Is the microwave irradiation a suitable method for measuring soil microbial biomass? Rev Environ Sci Biotechnol 9(4):317–321

    Article  CAS  Google Scholar 

  39. Powlson DS, Jenkinson DS (1975) The effects of biocidal treatments on metabolism in soil. II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biol Biochem 8(3):179–188

    Article  Google Scholar 

  40. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  41. Bell CW, Fricks BE, Rocca JD et al (2013) High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp 81:e50961

    Google Scholar 

  42. Soares JR, Cantarella H, Vargas VP et al (2015) Enhanced-efficiency fertilizers in nitrous oxide emissions from urea applied to sugarcane. J Environ Qual 44:423–430

    Article  CAS  PubMed  Google Scholar 

  43. Navarrete AA, Pitombo LM, Brandani CB et al (2017) Multi-analytical interactions in support of sugarcane agroecosystems sustainability in tropical soils. Sugarcane - Technology and Research, Alexandre Bosco de Oliveira, IntechOpen. https://doi.org/10.5772/intechopen.71180

  44. Hartman B (2002) How to collect reliable soil-gas data for risk-based applications, part 1: active soil-gas method. LUSTline Bull 42:17–22

    Google Scholar 

  45. Pitombo LM, do Carmo JB, Cantarella H et al (2016) Exploring soil microbial 16S rRNA sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop. GCB Bioenergy 8(5):867–879

    Article  CAS  Google Scholar 

  46. Lourenço KS, Dimitrov M, Pijl AS et al (2018) Dominance of bacterial ammonium oxidizers and fungal denitrifiers in the complex nitrogen cycle pathways related to nitrous oxide emission. GCB Bioenergy 10(9):645–660

    Article  CAS  Google Scholar 

  47. Lourenço KS, Cassman N, Pijl AS et al (2018) Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front Microbiol 9:674

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carmo JB, Filoso S, Zotelli LC et al (2013) In-field greenhouse gas emissions from sugarcane soils in Brazil: effects from the use of synthetic and organic fertilizers and crop trash accumulation. GCB Bioenergy 5:267–280

    Article  CAS  Google Scholar 

  49. Carter MR, Gregorich EG (2006) Soil sampling and methods of analysis, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  50. Armada E, Leite MFA, Medina A et al (2018) Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiol Ecol 94(7):fix092

    Article  CAS  Google Scholar 

  51. Faust K, Raes J (2016) CoNet app: inference of biological association networks using Cytoscape [version 2]. F1000Res 5:1519

    Article  PubMed  PubMed Central  Google Scholar 

  52. Smoot M, Ono K, Ruscheinski J et al (2012) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil CAPES—23038.006927/2014-35/Premium 116/2017, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - 2011/51749-6), and BE-Basic 008.002.005, NWO-Fapesp 729.004.003, NWO-CNPq 729.004.013-456420/2013-4. AAN was supported by FAPESP 2017/03575-5.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Navarrete, A.A. et al. (2021). Methods to Identify Soil Microbial Bioindicators of Sustainable Management of Bioenergy Crops. In: Carvalhais, L.C., Dennis, P.G. (eds) The Plant Microbiome. Methods in Molecular Biology, vol 2232. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1040-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1040-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1039-8

  • Online ISBN: 978-1-0716-1040-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics