Skip to main content

Automated Biocircuit Design with SYNBADm

  • Protocol
  • First Online:
Synthetic Gene Circuits

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2229))

  • 1226 Accesses

Abstract

SYNBADm is a Matlab toolbox for the automated design of biocircuits using a model-based optimization approach. It enables the design of biocircuits with pre-defined functions starting from libraries of biological parts. SYNBADm makes use of mixed integer global optimization and allows both single and multi-objective design problems. Here we describe a basic protocol for the design of synthetic gene regulatory circuits. We illustrate step-by-step how to solve two different problems: (1) the (single objective) design of a synthetic oscillator and (2) the (multi-objective) design of a circuit with switch-like behavior upon induction, with a good compromise between performance and protein production cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20(4):479–485

    Article  CAS  Google Scholar 

  2. Rodrigo G, Landrain TE, Shen S, Jaramillo A (2013) A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends Genet 29(9):529–536

    Article  CAS  Google Scholar 

  3. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA (2016) Genetic circuit design automation. Science 352(6281):aac7341

    Google Scholar 

  4. Otero-Muras I, Henriques D, Banga JR (2016) Synbadm: a tool for optimization-based automated design of synthetic gene circuits. Bioinformatics 32(21):3360–3362

    Article  CAS  Google Scholar 

  5. Xiang Y, Dalchau N, Wang B (2018) Scaling up genetic circuit design for cellular computing: advances and prospects. Nat Comput 17(4):833–853

    Article  CAS  Google Scholar 

  6. Otero-Muras I, Banga JR (2017) Automated design framework for synthetic biology exploiting Pareto optimality. ACS Synth Biol 6(7):1180–1193

    Article  CAS  Google Scholar 

  7. Egea JA, Marti R, Banga JR (2010) An evolutionary method for complex-process optimization. Comput Oper Res 37:315–324

    Article  Google Scholar 

  8. Exler O, Schittkowski K (2007) A trust region SQP algorithm for mixed-integer nonlinear programming. Optim Lett 1(3):269–280

    Article  Google Scholar 

  9. Exler O, Antelo LT, Egea JA, Alonso AA, Banga JR (2008) A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design. Comput Chem Eng 32(8):1877–1891

    Article  CAS  Google Scholar 

  10. Schlueter M, Egea JA, Banga JR (2009) Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput Oper Res 36(7):2217–2229

    Article  Google Scholar 

  11. Hansen P, Mladenovic N, Moreno-Perez JA (2010) Variable neighbourhood search: methods and applications. Ann Oper Res 175(1):367–407

    Article  Google Scholar 

  12. Pedersen M, Phillips A (2009) Towards programming languages for genetic engineering of living cells. J R Soc Interface 6:S437–S450

    Article  CAS  Google Scholar 

  13. Otero-Muras I, Banga JR (2016) Design principles of biological oscillators through optimization: Forward and reverse analysis. PLoS ONE 11(12):e0166867

    Article  Google Scholar 

  14. Dasika MS, Maranas CD (2008) Optcircuit: an optimization based method for computational design of genetic circuits. BMC Syst Biol 2:24

    Article  Google Scholar 

  15. Szekely P, Sheftel H, Mayo A, Alon U (2013) Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems. PLoS Comput Biol 9(8):e1003163

    Article  CAS  Google Scholar 

  16. Otero-Muras I, Banga JR (2014) Multicriteria global optimization for biocircuit design. BMC Syst Biol 8:113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Otero-Muras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Otero-Muras, I., Banga, J.R. (2021). Automated Biocircuit Design with SYNBADm. In: Menolascina, F. (eds) Synthetic Gene Circuits . Methods in Molecular Biology, vol 2229. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1032-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1032-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1031-2

  • Online ISBN: 978-1-0716-1032-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics