Skip to main content

Engineering Sensors for Gene Expression Burden

  • Protocol
  • First Online:
Synthetic Gene Circuits

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2229))

  • 1461 Accesses

Abstract

RNA-seq enables the analysis of gene expression profiles across different conditions and organisms. Gene expression burden slows down growth, which results in poor predictability of gene constructs and product yields. Here, we describe how we applied RNA-seq to study the transcriptional profiles of Escherichia coli when burden is elicited during heterologous gene expression. We then present how we selected early responsive promoters from our RNA-seq results to design sensors for gene expression burden. Finally, we describe how we used one of these sensors to develop a burden-driven feedback regulator to improve cellular fitness in engineered E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ceroni F, Algar R, Stan G-B, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415–418. https://doi.org/10.1038/nmeth.3339

    Article  CAS  PubMed  Google Scholar 

  2. Borkowski O, Ceroni F, Stan GB, Ellis T (2016) Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr Opin Microbiol 33:123–130. https://doi.org/10.1016/j.mib.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  3. Ellis T (2018) Predicting how evolution will beat us. Microb Biotechnol 12(1):41–43. https://doi.org/10.1111/1751-7915.13327

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martin VJJ, Pitera DJ, Withers ST et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802. https://doi.org/10.1038/nbt833

    Article  CAS  PubMed  Google Scholar 

  5. Gyorgy A, Jiménez JI, Yazbek J et al (2015) Isocost lines describe the cellular economy of genetic circuits. Biophys J 109:639–646. https://doi.org/10.1016/j.bpj.2015.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shachrai I, Zaslaver A, Alon U, Dekel E (2010) Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol Cell 38:758–767. https://doi.org/10.1016/j.molcel.2010.04.015

    Article  CAS  PubMed  Google Scholar 

  7. Gertz J, Varley KE, Davis NS et al (2012) Transposase mediated construction of RNA-seq libraries. Genome Res 22:134–141. https://doi.org/10.1101/gr.127373.111.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gorochowski TE, Espah Borujeni A, Park Y et al (2017) Genetic circuit characterization and debugging using RNA-seq. Mol Syst Biol 13:952. https://doi.org/10.15252/msb.20167461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Der BS, Glassey E, Bartley BA et al (2017) DNAplotlib: programmable visualization of genetic designs and associated data. ACS Synth Biol 6:1115–1119. https://doi.org/10.1021/acssynbio.6b00252

    Article  CAS  PubMed  Google Scholar 

  10. Myers CJ, Beal J, Gorochowski TE et al (2017) A standard-enabled workflow for synthetic biology. Biochem Soc Trans 45:793–803. https://doi.org/10.1042/BST20160347

    Article  CAS  PubMed  Google Scholar 

  11. Ceroni F, Boo A, Furini S et al (2018) Burden-driven feedback control of gene expression. Nat Methods 15:387–393. https://doi.org/10.1038/nmeth.4635

    Article  CAS  PubMed  Google Scholar 

  12. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  13. Keseler IM, Mackie A, Santos-Zavaleta A et al (2017) The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45:D543–D550. https://doi.org/10.1093/nar/gkw1003

    Article  CAS  PubMed  Google Scholar 

  14. Farasat I, Salis HM (2016) A biophysical model of CRISPR/Cas9 activity for rational design of genome editing and gene regulation. PLoS Comput Biol 12:1–33. https://doi.org/10.1371/journal.pcbi.1004724

    Article  CAS  Google Scholar 

  15. Petrova OE, Garcia-Alcalde F, Zampaloni C, Sauer K (2017) Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes. Sci Rep 7:1–15. https://doi.org/10.1038/srep41114

    Article  CAS  Google Scholar 

  16. Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183:6384–6393. https://doi.org/10.1128/JB.183.21.6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Algar RJR (2013) Understanding, characterising and modelling the interactions between synthetic genetic circuits and their host chassis Rhys James Richmond Algar, MA (Oxon), MRes Submission for the degree of PhD. Imperial College London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Ceroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boo, A., Ceroni, F. (2021). Engineering Sensors for Gene Expression Burden. In: Menolascina, F. (eds) Synthetic Gene Circuits . Methods in Molecular Biology, vol 2229. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1032-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1032-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1031-2

  • Online ISBN: 978-1-0716-1032-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics