Skip to main content

Methods for Experimental Allergen Immunotherapy: Subcutaneous and Sublingual Desensitization in Mouse Models of Allergic Asthma

  • Protocol
  • First Online:
Animal Models of Allergic Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2223))

Abstract

Allergic asthma is characterized by airway hyperresponsiveness, remodeling, and reversible airway obstruction. This is associated with an eosinophilic inflammation of the airways, caused by inhaled allergens such as house dust mite or grass pollen. The inhaled allergens trigger a type-2 inflammatory response with the involvement of innate lymphoid cells (ILC2) and Th2 cells, resulting in high immunoglobulin E (IgE) antibody production by B cells and mucus production by airway epithelial cells. As a consequence of the IgE production, subsequent allergen reexposure results in a classic allergic response with distinct early and late phases, both resulting in bronchoconstriction and shortness of breath. Allergen-specific immunotherapy (AIT) is the only treatment that is capable of modifying the immunological process underlying allergic responses including allergic asthma. Both subcutaneous AIT (SCIT) as well as sublingual AIT (SLIT) have shown clinical efficacy in long-term suppression of the allergic response. Although AIT treatments are very successful for rhinitis, application in asthma is hampered by variable efficacy, long duration of treatment, and risk of severe side effects. A more profound understanding of the mechanisms by which AIT induces tolerance to allergens in sensitized individuals is needed to be able to improve its efficacy. Mouse models have been very valuable in preclinical research for characterizing the mechanisms of desensitization in AIT and evaluating novel approaches to improve its efficacy. Here, we present a rapid and reproducible mouse model for allergen-specific immunotherapy. In this model, mice are sensitized with two injections of allergen adsorbed to aluminum hydroxide, followed by subcutaneous injections (SCIT) or sublingual administrations (SLIT) of allergen extracts as an immunotherapy treatment. Finally, mice are challenged by intranasal allergen administrations. We will also describe the protocols as well as the most important readout parameters for the measurements of invasive lung function, serum immunoglobulin levels, isolation of bronchoalveolar lavage fluid (BALF), and preparation of cytospin slides. Moreover, we describe how to perform ex vivo restimulation of lung single-cell suspensions with allergens, flow cytometry for identification of relevant immune cell populations, and ELISAs and Luminex assays for assessment of the cytokine concentrations in BALF and lung tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11:577–584. https://doi.org/10.1038/ni.1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiss ST, Litonjua AA, Lange C, Lazarus R, Liggett SB, Bleecker ER, Tantisira KG (2006) Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J 6:311–326. https://doi.org/10.1038/sj.tpj.6500387

    Article  CAS  PubMed  Google Scholar 

  3. Backman H, Räisänen P, Hedman L, Stridsman C, Andersson M, Lindberg A, Lundbäck B, Rönmark E (2017) Increased prevalence of allergic asthma from 1996 to 2006 and further to 2016-results from three population surveys. Clin Exp Allergy 47:1426–1435. https://doi.org/10.1111/cea.12963

    Article  PubMed  Google Scholar 

  4. Lambrecht BN, Hammad H (2014) The immunology of asthma. Nat Immunol 16:45–56. https://doi.org/10.1038/ni.3049

    Article  CAS  Google Scholar 

  5. Holgate ST, Polosa R (2008) Treatment strategies for allergy and asthma. Nat Rev Immunol 8:218–230. https://doi.org/10.1038/nri2262

    Article  CAS  PubMed  Google Scholar 

  6. Matte-martyn A, Sc B, Diaz-granados N, Sc B, Al-saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Ph D, Cook D, Slutsky AS, Critical C, Trials C (2011) Long-term inhaled corticosteroids in preschool children at high risk for asthma. New Engl J Med 354:683–693. https://doi.org/10.1056/NEJMoa1207363

    Article  CAS  Google Scholar 

  7. Guilbert TW, Martinez FD, Lemanske RF, Strunk RC, Covar R, Szefler SJ, Boehmer S, Jackson DJ, Sorkness CA, Pharm D, Gern JE, Kelly HW, Pharm D, Friedman NJ, Mellon MH, Schatz M, Morgan WJ, Chinchilli VM, Ph D, Raissy HH, Pharm D, Bade E, Malka-rais J, Beigelman A, Taussig LM (2011) Daily or intermittent budesonide in preschool children with recurrent wheezing. N Engl J Med 365(21):1990–2001. https://doi.org/10.1056/NEJMoa1104647

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hancox RJ, Cowan JO, Flannery EM, Herbison GP, McLachlan CR, Taylor DR (2000) Bronchodilator tolerance and rebound bronchoconstriction during regular inhaled beta-agonist treatment. Respir Med 94:767–771. https://doi.org/10.1053/rmed.2000.0820

    Article  CAS  PubMed  Google Scholar 

  9. Yim RP, Koumbourlis AC (2013) Tolerance & resistance to β2-agonist bronchodilators. Paediatr Respir Rev 14:195–198. https://doi.org/10.1016/j.prrv.2012.11.002

    Article  PubMed  Google Scholar 

  10. Jutel M (2014) Allergen-specific immunotherapy in asthma. Curr Treat Options Allergy 1:213–219. https://doi.org/10.1007/s40521-014-0013-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jacobsen L, Niggemann B, Dreborg S, Ferdousi HA, Halken S, Høst A, Koivikko A, Norberg LA, Valovirta E, Wahn U, Möller C (2007) Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy 62:943–948. https://doi.org/10.1111/j.1398-9995.2007.01451.x

    Article  CAS  PubMed  Google Scholar 

  12. Passalacqua G (2014) Specific immunotherapy in asthma: a comprehensive review. J Asthma 51:29–33. https://doi.org/10.3109/02770903.2013.853082

    Article  CAS  PubMed  Google Scholar 

  13. Epstein TG, Liss GM, Murphy-Berendts K, Bernstein DI (2014) AAAAI/ACAAI surveillance study of subcutaneous immunotherapy, years 2008-2012: an update on fatal and nonfatal systemic allergic reactions. J Allergy Clin Immunol Pract 2:161–167.e3. https://doi.org/10.1016/j.jaip.2014.01.004

    Article  PubMed  Google Scholar 

  14. Jacobsen L, Wahn U, Bilo MB (2012) Allergen-specific immunotherapy provides immediate, long-term and preventive clinical effects in children and adults: the effects of immunotherapy can be categorised by level of benefit -the centenary of allergen specific subcutaneous immunotherapy. Clin Transl Allergy 2:8. https://doi.org/10.1186/2045-7022-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Durham SR, Emminger W, Kapp A, de Monchy JGR, Rak S, Scadding GK, Wurtzen PA, Andersen JS, Tholstrup B, Riis B, Dahl R (2012) SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol 129:717–725.e5. https://doi.org/10.1016/j.jaci.2011.12.973

    Article  PubMed  Google Scholar 

  16. Didier A, Worm M, Horak F, Sussman G, de Beaumont O, Le Gall M, Melac M, Malling H-J (2011) Sustained 3-year efficacy of pre- and coseasonal 5-grass-pollen sublingual immunotherapy tablets in patients with grass pollen-induced rhinoconjunctivitis. J Allergy Clin Immunol 128:559–566. https://doi.org/10.1016/j.jaci.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  17. Janssen EM, van Oosterhout AJ, Nijkamp FP, van Eden W, Wauben MH (2000) The efficacy of immunotherapy in an experimental murine model of allergic asthma is related to the strength and site of T cell activation during immunotherapy. J Immunol 165:7207–7214. https://doi.org/10.4049/jimmunol.165.12.7207

    Article  CAS  PubMed  Google Scholar 

  18. Janssen EM, Wauben MH, Jonker EH, Hofman G, Van Eden W, Nijkamp FP, Van Oosterhout AJ (1999) Opposite effects of immunotherapy with ovalbumin and the immunodominant T-cell epitope on airway eosinophilia and hyperresponsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 21(1):21–29. https://doi.org/10.1165/ajrcmb.21.1.3519

    Article  CAS  PubMed  Google Scholar 

  19. Shirinbak S, Taher YA, Maazi H, Gras R, van Esch BCAM, Henricks PAJ, Samsom JN, Verbeek JS, Lambrecht BN, van Oosterhout AJM, Nawijn MC (2010) Suppression of Th2-driven airway inflammation by allergen immunotherapy is independent of B cell and Ig responses in mice. J Immunol 185:3857–3865. https://doi.org/10.4049/jimmunol.0903909

    Article  CAS  PubMed  Google Scholar 

  20. Taher YA, van Esch BCAM, Hofman GA, Henricks PAJ, van Oosterhout AJM (2008) 1,25-dihydroxyvitamin d3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma: role for IL-10 and TGF-β. J Immunol 180:5211–5221. https://doi.org/10.4049/jimmunol.180.8.5211

    Article  CAS  PubMed  Google Scholar 

  21. Maazi H, Shirinbak S, Willart M, Hammad HM, Cabanski M, Boon L, Ganesh V, Baru AM, Hansen G, Lambrecht BN, Sparwasser T, Nawijn MC, van Oosterhout AJM (2012) Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy. Clin Exp Allergy 42:1519–1528. https://doi.org/10.1111/j.1365-2222.2012.04064.x

    Article  CAS  PubMed  Google Scholar 

  22. Vissers JLM, van Esch BCAM, Hofman GA, van Oosterhout AJM (2005) Macrophages induce an allergen-specific and long-term suppression in a mouse asthma model. Eur Respir J 26:1040–1046. https://doi.org/10.1183/09031936.05.00089304

    Article  CAS  PubMed  Google Scholar 

  23. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993. https://doi.org/10.1038/nri1246

    Article  CAS  PubMed  Google Scholar 

  24. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–1222. https://doi.org/10.1084/jem.192.9.1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiner HL (2001) The mucosal milieu creates tolerogenic dendritic cells and T(R)1 and T(H)3 regulatory cells. Nat Immunol 2(8):671–672. https://doi.org/10.1038/90604

    Article  CAS  PubMed  Google Scholar 

  26. Maazi H, Shirinbak S, den Boef LE, Fallarino F, Volpi C, Nawijn MC, van Oosterhout AJM (2013) Cytotoxic T lymphocyte antigen 4-immunoglobulin G is a potent adjuvant for experimental allergen immunotherapy. Clin Exp Immunol 172:113–120. https://doi.org/10.1111/cei.12041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan AM, Chen H-C, Pochard P, Eisenbarth SC, Herrick CA, Bottomly HK (2010) TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J Immunol 184:3535–3544. https://doi.org/10.4049/jimmunol.0900340

    Article  CAS  PubMed  Google Scholar 

  28. Hesse L, Brouwer U, Petersen AH, Gras R, Bosman L, Brimnes J, Oude Elberink JNG, van Oosterhout AJM, Nawijn MC (2018) Subcutaneous immunotherapy suppresses Th2 inflammation and induces neutralizing antibodies, but sublingual immunotherapy suppresses airway hyperresponsiveness in grass pollen mouse models for allergic asthma. Clin Exp Allergy 48:1035–1049. https://doi.org/10.1111/cea.13169

    Article  CAS  PubMed  Google Scholar 

  29. Hesse L, van Ieperen N, Habraken C, Petersen AH, Korn S, Smilda T, Goedewaagen B, Ruiters MH, van der Graaf AC, Nawijn MC (2018) Subcutaneous immunotherapy with purified Der p1 and 2 suppresses type 2 immunity in a murine asthma model. Allergy 73:1–13. https://doi.org/10.1111/all.13382

    Article  CAS  Google Scholar 

  30. Hesse L, Feenstra R, Ambrosini M, de Jager WA, Petersen A, Vietor H, Unger WWJ, van Kooyk Y, Nawijn MC (2019) Subcutaneous immunotherapy using modified Phl p5a-derived peptides efficiently alleviates allergic asthma in mice. Allergy 74(12):2495–2498. https://doi.org/10.1111/all.13918

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brimnes J, Kildsgaard J, Jacobi H, Lund K (2007) Sublingual immunotherapy reduces allergic symptoms in a mouse model of rhinitis. Clin Exp Allergy 37:488–497. https://doi.org/10.1111/j.1365-2222.2006.02624.x

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann HJ, Valovirta E, Pfaar O, Moingeon P, Schmid JM, Skaarup SH, Cardell LO, Simonsen K, Larché M, Durham SR, Sørensen P (2017) Novel approaches and perspectives in allergen immunotherapy. Allergy 72(7):1022–1034. https://doi.org/10.1111/all.13135

    Article  CAS  PubMed  Google Scholar 

  33. Elliott J, Kelly SE, Johnston A, Skidmore B, Gomes T, Wells GA (2017) Allergen immunotherapy for the treatment of allergic rhinitis and/or asthma: an umbrella review. CMAJ Open 5(2):E373–E385. https://doi.org/10.9778/cmajo.20160066

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jönsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, Shimizu T, Daëron M, Bruhns P (2011) Mouse and human neutrophils induce anaphylaxis. J Clin Invest 121(4):1484–1496. https://doi.org/10.1172/JCI45232

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marco-Martín G, La Rotta HA, Vázquez De La Torre M, Higaki Y, Zubeldia JM, Baeza ML (2017) Differences in the anaphylactic response between C3H/HeOuJ and BALB/c mice. Int Arch Allergy Immunol 173:204–212. https://doi.org/10.1159/000478983

    Article  CAS  PubMed  Google Scholar 

  36. Sun J, Arias K, Alvarez D, Fattouh R, Walker T, Goncharova S, Kim B, Waserman S, Reed J, Coyle AJ, Jordana M (2007) Impact of CD40 ligand, B cells, and mast cells in peanut-induced anaphylactic responses. J Immunol 179:6696–6703. https://doi.org/10.4049/jimmunol.179.10.6696

    Article  CAS  PubMed  Google Scholar 

  37. Finkelman FD (2007) Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol 120:506–515. https://doi.org/10.1016/j.jaci.2007.07.033

    Article  CAS  PubMed  Google Scholar 

  38. Robichaud A, Fereydoonzad L, Urovitch IB, Brunet J-D (2015) Comparative study of three flexiVent system configurations using mechanical test loads. Exp Lung Res 41:84–92. https://doi.org/10.3109/01902148.2014.971921

    Article  PubMed  Google Scholar 

  39. Twisk JW (2004) Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. Eur J Epidemiol 19(8):769–776. https://doi.org/10.1023/b:ejep.0000036572.00663.f2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Laura Hesse is supported by the Dutch Lung Foundation (NAF10.060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn C. Nawijn .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplement 1

Jugular vein (AI 1781 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hesse, L., Petersen, A.H., Nawijn, M.C. (2021). Methods for Experimental Allergen Immunotherapy: Subcutaneous and Sublingual Desensitization in Mouse Models of Allergic Asthma. In: Nagamoto-Combs, K. (eds) Animal Models of Allergic Disease. Methods in Molecular Biology, vol 2223. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1001-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1001-5_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1000-8

  • Online ISBN: 978-1-0716-1001-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics