Skip to main content

2D Electron Crystallography of Membrane Protein Single-, Double-, and Multi-Layered Ordered Arrays

  • Protocol
  • First Online:
cryoEM

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2215))

Abstract

The electron cryo-microscopy (cryo-EM) approach of 2D electron crystallography allows for structure determination of two-dimensional (2D) crystals of soluble and membrane proteins, employing identical principles and methods once 2D crystals are obtained. Two-dimensional crystallization trials of membrane proteins can result in multiple outcomes of ordered arrays, which may be suited for either 2D electron crystallography, helical analysis, or MicroED.

The membrane protein 2D crystals used for 2D electron crystallography are either single- or double-layered ordered proteoliposome vesicles or sheet-like membranes. We have developed a cryo-EM grid preparation approach, which allows for the analysis of stacked 2D crystals that are neither suitable for MicroED nor for directly applying 2D electron crystallography. This new grid preparation approach, the peel-blot, uses the capillary force generated by submicron filter paper and mechanical means for the separation of stacked 2D crystals into single-layered 2D crystals, for which standard 2D electron crystallography can then be employed. The preparation of 2D crystals, the peel-blot grid preparation, and the structure determination by 2D electron crystallography are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257(5521):28–32

    Article  CAS  PubMed  Google Scholar 

  2. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213(4):899–929

    Article  CAS  PubMed  Google Scholar 

  3. Wang DN, Kühlbrandt W, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367(6464):614–621

    Article  PubMed  Google Scholar 

  4. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203

    Article  CAS  PubMed  Google Scholar 

  5. Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    Article  PubMed  CAS  Google Scholar 

  6. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438(7068):633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kühlbrandt W (2014) The resolution revolution. Science 343(6178):1443–1444

    Article  PubMed  Google Scholar 

  8. Efremov RG, Gatsogiannis C, Raunser S (2017) Lipid nanodiscs as a tool for high-resolution structure determination of membrane proteins by single-particle cryo-EM. Methods Enzymol 594:1–30

    Article  CAS  PubMed  Google Scholar 

  9. Sun C, Gennis RB (2019) Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs. Chem Phys Lipids 221:114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nannenga BL, Gonen T (2018) MicroED: a versatile cryoEM method for structure determination. Emerg Top Life Sci 2(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martynowycz MW, Zhao W, Hattne J, Jensen GJ, Gonen T (2019) Collection of continuous rotation microed data from ion beam-milled crystals of any size. Structure 27(3):545–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jap BK, Zulauf M, Scheybani T, Hefti A, Baumeister W, Aebi U, Engel A (1992) 2D crystallization: from art to science. Ultramicroscopy 46:45–84

    Article  CAS  PubMed  Google Scholar 

  13. Kühlbrandt W (1992) Two-dimensional crystallization of membrane proteins. Q Rev Biophys 25:1–49

    Article  PubMed  Google Scholar 

  14. Stahlberg H, Fotiadis D, Scheuring S, Rémigy H, Braun T, Mitsuoka K, Fujiyoshi Y, Engel A (2001) Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett 504:166–172

    Article  CAS  PubMed  Google Scholar 

  15. Mosser G (2001) Two-dimensional crystallogenesis of transmembrane proteins. Micron 32:517–540

    Article  CAS  PubMed  Google Scholar 

  16. Kühlbrandt W (2003) In: Schägger H, Hunte C (eds) Membrane protein purification and crystallization: a practical approach, 2nd edn. Academic Press, San Diego, pp 253–284

    Chapter  Google Scholar 

  17. Schmidt-Krey I (2007) Electron crystallography of membrane proteins: two-dimensional crystallization and screening by electron microscopy. Methods 41(4):417–426

    Article  CAS  PubMed  Google Scholar 

  18. Signorell GA, Kaufmann TC, Kukulski W, Engel A, Rémigy HW (2007) Controlled 2D crystallization of membrane proteins using methyl-betacyclodextrin. J Struct Biol 157(2):321–328

    Article  CAS  PubMed  Google Scholar 

  19. Vink M, Derr KD, Love J, Stokes DL, Ubarretxena-Belandia I (2007) A high throughput strategy to screen 2D crystallization trials of membrane proteins. J Struct Biol 160(3):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson MC, Schmidt-Krey I (2013) Two-dimensional crystallization by dialysis for structural studies of membrane proteins by the cryo-EM method electron crystallography. Methods Cell Biol 113:325–337

    Article  CAS  PubMed  Google Scholar 

  21. Uddin YM, Schmidt-Krey I (2015) Inducing two-dimensional crystallization of membrane proteins by dialysis for electron crystallography. Methods Enzymol 557:351–362

    Article  CAS  PubMed  Google Scholar 

  22. Kühlbrandt W, Downing KH (1989) Two-dimensional structure of plant light harvesting complex at 3.7 °A resolution by electron crystallography. J Mol Biol 207:823–826

    Article  PubMed  Google Scholar 

  23. Wang DN, Kühlbrandt W (1991) High-resolution electron crystallography of light-harvesting chlorophyll a/b-protein complex in three different media. J Mol Biol 217(4):691–699

    Article  CAS  PubMed  Google Scholar 

  24. Subramaniam S, Faruqi AR, Oesterhelt D, Henderson R (1997) Electron diffraction studies of light-induced conformational changes in the Leu-93 --> Ala bacteriorhodopsin mutant. Proc Natl Acad Sci U S A 94(5):1767–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35:25–80

    Article  CAS  PubMed  Google Scholar 

  26. Subramaniam S, Henderson R (1999) Electron crystallography of bacteriorhodopsin with millisecond time resolution. J Struct Biol 128(1):19–25

    Article  CAS  PubMed  Google Scholar 

  27. Koning RI, Oostergetel GT, Brisson A (2003) Preparation of flat carbon support films. Ultramicroscopy 94:183–191

    Article  CAS  PubMed  Google Scholar 

  28. Gyobu N, Tani K, Hiroaki Y, Kamegawa A, Mitsuoka K, Fujiyoshi Y (2004) Improved specimen preparation for cryo-electron microscopy using a symmetric carbon sandwich technique. J Struct Biol 146:325–333

    Article  CAS  PubMed  Google Scholar 

  29. Amos LA, Henderson R, Unwin PN (1982) Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol 39(3):183–231

    Article  CAS  PubMed  Google Scholar 

  30. Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259(3):393–421

    Article  CAS  PubMed  Google Scholar 

  31. Biyani N, Righetto RD, McLeod R, Caujolle-Bert D, Castano-Diez D, Goldie KN, Stahlberg H (2017) Focus: The interface between data collection and data processing in cryo-EM. J Struct Biol 198(2):124–133

    Article  CAS  PubMed  Google Scholar 

  32. Gonen T (2013) The collection of high-resolution electron diffraction data. In: Electron crystallography of soluble and membrane proteins. Humana Press, Totowa, NJ, pp 153–169

    Chapter  Google Scholar 

  33. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151(1):41–60

    Article  CAS  PubMed  Google Scholar 

  34. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152(1):36–51

    Article  PubMed  Google Scholar 

  35. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10(6):584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14(4):331–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. elife 4:e06980

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192(2):216–221

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang K (2016) Gctf: Real-time CTF determination and correction. J Struct Biol 193(1):1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116(1):9–16

    Article  CAS  PubMed  Google Scholar 

  41. Walz T, Häner M, Wu XR, Henn C, Engel A, Sun TT, Aebi U (1995) Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed “twisted ribbon” structure. J Mol Biol 248(5):887–900

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt-Krey I, Kanaoka Y, Mills DJ, Irikura D, Haase W, Lam BK, Austen KF, Kühlbrandt W (2004) Human leukotriene C4 synthase at 4.5 Å resolution in projection. Structure 12(11):2009–2014

    Article  CAS  PubMed  Google Scholar 

  43. Zhao G, Johnson MC, Schnell JR, Kanaoka Y, Haase W, Irikura D, Lam BK, Schmidt-Krey I (2010) Two-dimensional crystallization conditions of human leukotriene C4 synthase requiring adjustment of a particularly large combination of specific parameters. J Struct Biol 169(3):450–454

    Article  CAS  PubMed  Google Scholar 

  44. Gipson B, Zeng X, Zhang ZY, Stahlberg H (2007) 2dx—user-friendly image processing for 2D crystals. J Struct Biol 157(1):64–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by NIH grant HL090630 (ISK) and an SREB Fellowship (KN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingeborg Schmidt-Krey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, M.C., Uddin, Y.M., Neselu, K., Schmidt-Krey, I. (2021). 2D Electron Crystallography of Membrane Protein Single-, Double-, and Multi-Layered Ordered Arrays. In: Gonen, T., Nannenga, B.L. (eds) cryoEM. Methods in Molecular Biology, vol 2215. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0966-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0966-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0965-1

  • Online ISBN: 978-1-0716-0966-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics