Skip to main content

Combinatorial-Hierarchical DNA Library Design Using the TeselaGen DESIGN Module with j5

  • Protocol
  • First Online:
DNA Cloning and Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2205))

Abstract

Modern DNA assembly techniques are known for their potential to link multiple large DNA fragments together into even larger constructs in single pot reactions that are easier to automate and work more reliably than traditional cloning methods. The simplicity of the chemistry is in contrast to the increased work needed to design optimal reactions that maximize DNA fragment reuse, minimize cost, and organize thousands of potential chemical reactions. Here we examine available DNA assembly methods and describe through example, the construction of a complex but not atypical combinatorial and hierarchical library using protocols that are generated automatically with the assistance of modern synthetic biology software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    Article  CAS  Google Scholar 

  2. Arkin A (2008) Setting the standard in synthetic biology. Nat Biotechnol 26(7):771–774

    Article  CAS  Google Scholar 

  3. Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21

    Article  CAS  Google Scholar 

  4. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256

    Article  CAS  Google Scholar 

  5. Gibson DG (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  Google Scholar 

  6. Chou HH, Hsia AP, Mooney DL, Schnable PS (2004) Picky: oligo microarray design for large genomes. Bioinformatics 20:2893–2902

    Article  CAS  Google Scholar 

  7. Birla BS, Chou HH (2015) Rational design of high-number dsDNA fragments based on thermodynamics for the construction of full-length genes in a single reaction. PLoS One 10(12):e0145682

    Article  Google Scholar 

  8. Li L, Jiang W, Lu Y (2018) A modified Gibson assembly method for cloning large DNA fragments with high GC content. Methods Mol Biol 1671:203–209

    Article  CAS  Google Scholar 

  9. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PloS one 4(7):6441

    Article  Google Scholar 

  10. Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40(8):e55

    Article  CAS  Google Scholar 

  11. Ramon A, Smith HO (2011) Single-step linker-based combinatorial assembly of promoter and gene cassettes for pathway engineering. Biotechnol Lett 33(3):549–555

    Article  CAS  Google Scholar 

  12. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6(2):242–251

    Article  CAS  Google Scholar 

  13. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden Gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553. https://doi.org/10.1371/journal.pone.0005553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engler C, Marillonnet S (2011) Generation of families of construct variants using golden gate shuffling. Methods Mol Biol 729:167–181

    Article  CAS  Google Scholar 

  15. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):3647

    Article  Google Scholar 

  16. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  17. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 1(1-2):203–214

    Article  Google Scholar 

  18. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37(20):6984–6990

    Article  CAS  Google Scholar 

  19. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20):6069–6074

    Article  CAS  Google Scholar 

  20. Weber E, Engler C, Gruetzer R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 10(1371):0016765

    Article  Google Scholar 

  21. Werner S, Engler C, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3(1):38–43

    PubMed  Google Scholar 

  22. Sarrion-Perdigones A, Falconi E, Zandalinas S, Juárez P, Fernández-del-Carment A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6(7):e21622

    Article  CAS  Google Scholar 

  23. Jin P, Ding W, Du G, Chen J, Kang Z (2016) DATEL: a scarless and sequence-independent DNA assembly method using thermostable exonucleases and ligase. ACS Synth Biol 5(9):1028–1032

    Article  CAS  Google Scholar 

  24. de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman J, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3(2):97–106

    Article  Google Scholar 

  25. Chandran S (2017) Rapid assembly of DNA via ligase cycling reaction (LCR). Methods Mol Biol 1472:105–110

    Article  CAS  Google Scholar 

  26. Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R (2007) USER™ friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35(6):1992–2002

    Article  CAS  Google Scholar 

  27. Bitinaite J, Nichols NM (2009) DNA cloning and engineering by uracil excision. Curr Protoc Mol Biol Chapter 3:Unit 3.21

    PubMed  Google Scholar 

  28. Storch M, Casini A, Mackrow B, Ellis T, Baldwin GS (2017) BASIC: a simple and accurate modular DNA assembly method. Methods Mol Biol 1472:79–91

    Article  CAS  Google Scholar 

  29. Zeng F, Zang J, Zhang S, Hao Z, Dong J, Lin Y (2017) AFEAP cloning: a precise and efficient method for large DNA sequence assembly. BMC Biotechnol 17(1):81

    Article  CAS  Google Scholar 

  30. Bilitchenko L, Liu A, Cheung S, Weeding E, Xia B, Leguia M, Anderson JC, Densmore D (2011) Eugene – a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PLoS One 6(4):e18882

    Article  CAS  Google Scholar 

  31. Quinn J, Cox RS, Adler A, Beal J, Bhatia S, Cai Y, Chen J, Galdzicki M, Clancy K, Hillson N, Le Novère N, Maheshwari A, McLaughlin JA, Myers C, Umesh P, Pocock M, Rodriguez C, Soldatova L, Stan G-BV, Swainston N, Wipat A, Sauro HM (2015) SBOL visual: a graphical language for genetic designs. PLoS Biol 13(12):e1002310

    Article  Google Scholar 

Download references

Acknowledgments

Michael Matena and Adam Thomas for development of TeselaGen’s Hierarchical Design Editor; Thomas Rich and Tiffany Dai for development of TeselaGen’s Open Vector Editor; Rodrigo Pavez, Tim Thimmaiah, and Nick Elsbree for TeselaGen software platform development to support DNA design; and Katy Basile and Matthew Gibson for intellectual property consultation and support. Portions of this work were funded by NSF 1430986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Fero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fero, M.J., Craft, J.K., Vu, T., Hillson, N.J. (2020). Combinatorial-Hierarchical DNA Library Design Using the TeselaGen DESIGN Module with j5. In: Chandran, S., George, K. (eds) DNA Cloning and Assembly. Methods in Molecular Biology, vol 2205. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0908-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0908-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0907-1

  • Online ISBN: 978-1-0716-0908-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics