Skip to main content

Magnetic Nanoparticles as Delivery Systems to Penetrate the Blood-Brain Barrier

  • Protocol
  • First Online:
Nanomedicines for Brain Drug Delivery

Part of the book series: Neuromethods ((NM,volume 157))

Abstract

Crossing the blood-brain barrier (BBB) is essential for effective treatment of brain disorders. Due to their physical properties, biocompatibility, and biodegradability, superparamagnetic iron oxide nanoparticles (SPIONs) show promise as carriers of therapeutics or as a therapeutic system in themselves. The use of SPIONs as a therapeutic system with the capacity to penetrate the BBB is based on three different strategies: (a) SPIONs are encapsulated in a therapeutic nanoscale system thought to cross the BBB. The presence of SPIONs inside the brain is easily detectable by techniques such as magnetic resonance imaging (MRI), confirming entry of the nanoscale system into the brain; (b) movement of the SPION-encapsulated load toward the site of action is assisted by the action of an external magnetic field; and (c) SPIONs generate moderate or high heat after applying radiofrequency or microwave radiation; this heat can either locally open the BBB or kill the cancerous cells.

This review summarizes the advances that have been made when SPIONs have been applied in some diseases involving the brain, such as neurodegenerative diseases, gliomas, and neuro-acquired immunodeficiency syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244

    Article  CAS  PubMed  Google Scholar 

  2. Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189

    Article  CAS  PubMed  Google Scholar 

  3. Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–2885

    Article  CAS  PubMed  Google Scholar 

  4. Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Levy R (2014) Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 8(4):3107–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arruebo M, Fernández-Pacheco R, Ibarra M, Santamaría J (2007) Magnetic nanoparticles for drug delivery. NanoToday 2(3):22–32

    Article  Google Scholar 

  6. Hanini A, Lartigue L, Gavard J, Schmitt A, Kacem K, Wilhelm C, Gazeau F, Chau F, Ammar S (2016) Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following y-Fe2O3 NP internalization and magnetic field application. RSC Adv 6:15415–15425

    Article  CAS  Google Scholar 

  7. Busquets MA, Espargaro A, Sabate R, Estelrich J (2015) Magnetic nanoparticles cross the blood-brain barrier: when physics rises a challenge. Nano 5:2231–2248

    CAS  Google Scholar 

  8. Wui W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501–023543

    Article  CAS  Google Scholar 

  9. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Jimeno S, Escribano E, Queralt J, Estelrich J (2012) External magnetic field-induced selective biodistribution of magnetoliposomes in mice. Nanoscale Res Lett 7(1):452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Estelrich J, Sanchez-Martin MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun Z, Worden M, Thliveris JA, Hombach-Klonisch S, Klonisch T, van Lierop J, Hegmann T, Miller DW (2016) Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Nanomedicine 12:1775

    Article  CAS  PubMed  Google Scholar 

  13. Lajoie JM, Shusta EV (2015) Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 55:613–631

    Article  CAS  PubMed  Google Scholar 

  14. Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE (2014) Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 9(4):501–516

    Article  CAS  Google Scholar 

  15. Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33(10):2936–2951

    Article  CAS  PubMed  Google Scholar 

  16. De Cuyper M, Joniau M (1988) Magnetoliposomes. Formation and structural characterization. Eur Biophys J 15(5):311–319

    Article  PubMed  Google Scholar 

  17. Sagar V, Pilakka-Kanthikeel S, Pottathil R, Saxena SK, Nair M (2014) Towards nanomedicines for neuroAIDS. Rev Med Virol 24(2):103–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kong SD, Lee J, Ramachandran S, Eliceiri BP, Shubayev VI, Lal R, Jin S (2012) Magnetic targeting of nanoparticles across the intact blood-brain barrier. J Control Release 164(1):49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomsen LB, Thomsen MS, Moos T (2015) Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv 6(10):1145–1155

    Article  CAS  PubMed  Google Scholar 

  20. Stepp P, Thomas F, Lockman PR, Chen H, Rosengart AJ (2009) In vivo interactions of magnetic nanoparticles with the blood-brain barrier. J Magn Magn Mater 321:1591–1593

    Article  CAS  Google Scholar 

  21. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4(10):1352–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VS, Raymond A, Samikkannu T, Nair MP (2014) Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology 25(5):055101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Huang YF, Zhang B, Xie S, Yang B, Xu Q, Tan J (2016) Superparamagnetic iron oxide nanoparticles modified with tween 80 pass through the intact blood-brain barrier in rats under magnetic field. ACS Appl Mater Interfaces 8:11336–11341

    Article  CAS  PubMed  Google Scholar 

  24. Jones AR, Shusta EV (2007) Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24(9):1759–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P (2015) Wireless magnetothermal deep brain stimulation. Science 347(6229):1477–1480

    Article  CAS  PubMed  Google Scholar 

  26. Chiti F, Dobson CM (2007) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 5:333–366

    Google Scholar 

  27. Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C (2011) Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 152(2):208–231

    Article  CAS  PubMed  Google Scholar 

  28. Busquets MA, Sabate R, Estelrich J (2014) Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res Lett 9(1):538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mirsadeghi S, Shanehsazzadeh S, Atyabi F, Dinarvand R (2016) Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater Sci Eng C Mater Biol Appl 59:390–397

    Article  CAS  PubMed  Google Scholar 

  30. Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5):521–540

    Article  CAS  PubMed  Google Scholar 

  31. Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, Margel S (2013) Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-beta fibrils. Int J Nanomedicine 8:4063–4076

    PubMed  PubMed Central  Google Scholar 

  32. Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA, Lynch I (2013) Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid beta protein fibrillation in solution. ACS Chem Neurosci 4(3):475–485

    Article  CAS  PubMed  Google Scholar 

  33. Do TD, Ul Amin F, Noh Y, Kim MO, Yoon J (2016) Guidance of magnetic Nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. J Biomed Nanotechnol 12(3):569–574

    Article  CAS  PubMed  Google Scholar 

  34. Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S207–S209

    Article  PubMed  Google Scholar 

  35. Edmundson M, Thanh NT, Song B (2013) Nanoparticles based stem cell tracking in regenerative medicine. Theranostics 3(8):573–582

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Yang S-Y, Chiu M-J, Lin C-H, Horng H-E, Yang C-C, Chien J-J, Chen H-H, Liu BH (2016) Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J Nanobiotechnol 14(1):41

    Article  CAS  Google Scholar 

  37. Ramos-Gomez M, Seiz EG, Martinez-Serrano A (2015) Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain. J Nanobiotechnol 13:20

    Article  CAS  Google Scholar 

  38. Ramos-Gomez M, Martinez-Serrano A (2016) Tracking of iron-labeled human neural stem cells by magnetic resonance imaging in cell replacement therapy for Parkinson’s disease. Neural Regen Res 11(1):49–52

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Wang Z, Li X, Wang L, Yin M, Wang L, Chen N, Fan C, Song H (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Carter RL, Cho IK, Chan AW (2014) Cell-based therapies for Huntington’s disease. Drug Discov Today 19(7):980–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moraes L, Vasconcelos-dos-Santos A, Santana FC, Godoy MA, Rosado-de-Castro PH, Jasmin A-PRL, Cintra WM, Gasparetto EL, Santiago MF, Mendez-Otero R (2012) Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res 9(2):143–155

    Article  CAS  PubMed  Google Scholar 

  43. Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 15(11):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG (2012) Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol 5(2):173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, Sawaya R, Aldape K (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11(4):1462–1466

    Article  CAS  PubMed  Google Scholar 

  46. Painbeni T, Venier-Julienne MC, Benoit JP (1998) Internal morphology of poly(D,L-lactide-co-glycolide) BCNU-loaded microspheres. Influence on drug stability. Eur J Pharm Biopharm 45(1):31–39

    Article  CAS  PubMed  Google Scholar 

  47. Kim JO, Kabanov AV, Bronich TK (2009) Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release 138(3):197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214(2):568–574

    Article  CAS  PubMed  Google Scholar 

  49. Zimmer C, Weissleder R, Poss K, Bogdanova A, Wright SC Jr, Enochs WS (1995) MR imaging of phagocytosis in experimental gliomas. Radiology 197(2):533–538

    Article  CAS  PubMed  Google Scholar 

  50. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63(12):3154–3161

    CAS  PubMed  Google Scholar 

  51. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792

    Article  CAS  PubMed  Google Scholar 

  52. Chang J, Jallouli Y, Kroubi M, Yuan XB, Feng W, Kang CS, Pu PY, Betbeder D (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379(2):285–292

    Article  CAS  PubMed  Google Scholar 

  53. Saiyed ZM, Gandhi NH, Nair MP (2010) Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine 5:157–166

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Qiao R, Jia Q, Huwel S, Xia R, Liu T, Gao F, Galla HJ, Gao M (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6(4):3304–3310

    Article  CAS  PubMed  Google Scholar 

  55. Kenzaoui BH, Bernasconi CC, Hofmann H, Juillerat-Jeanneret L (2012) Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine (Lond) 7(1):39–53

    Article  CAS  Google Scholar 

  56. Philosof-Mazor L, Dakwar GR, Popov M, Kolusheva S, Shames A, Linder C, Greenberg S, Heldman E, Stepensky D, Jelinek R (2013) Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: new vehicles for magnetically targeted drug delivery. Int J Pharm 450(1–2):241–249

    Article  CAS  PubMed  Google Scholar 

  57. Chen G-J, Su Y-Z, Hsu C, Lo Y-L, Huang S-J, Ke J-H, Kuo Y-C, Wang L-F (2014) Angiopep-pluronic F127-conjugated superparamagnetic iron oxide nanoparticles as nanotheranostic agents for BBB targeting. J Mater Chem B 2:5666–5675

    Article  CAS  PubMed  Google Scholar 

  58. Cui Y, Xu Q, Chow PK, Wang D, Wang CH (2013) Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34(33):8511–8520

    Article  CAS  PubMed  Google Scholar 

  59. Yan F, Wang Y, He S, Ku S, Gu W, Ye L (2013) Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier. J Mater Sci Mater Med 24:2371–2379

    Article  CAS  PubMed  Google Scholar 

  60. Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F, Yang X, Xu H (2012) Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One 7(5):e37376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, Jiang X (2009) Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 134(1):55–61

    Article  CAS  PubMed  Google Scholar 

  62. Fang JH, Chiu TL, Huang WC, Lai YH, Hu SH, Chen YY, Chen SY (2016) Dual-targeting lactoferrin-conjugated polymerized magnetic polydiacetylene-assembled nanocarriers with self-responsive fluorescence/magnetic resonance imaging for in vivo brain tumor therapy. Adv Healthc Mater 5(6):688–695

    Article  CAS  PubMed  Google Scholar 

  63. Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, Zhang WG (2016) Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale 8(15):7808–7826

    Article  CAS  PubMed  Google Scholar 

  64. Remsen LG, McCormick CI, Roman-Goldstein S, Nilaver G, Weissleder R, Bogdanov A, Hellstrom I, Kroll RA, Neuwelt EA (1996) MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. AJNR Am J Neuroradiol 17(3):411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188(6):759–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30(12):2302–2318

    Article  CAS  PubMed  Google Scholar 

  68. Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomedicine 9:273–287

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788–8806

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lyons SA, O’Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39(2):162–173

    Article  PubMed  Google Scholar 

  71. Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M (2008) In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 4:372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang M (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4(8):4587–4594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163(4):871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YE, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    Article  CAS  PubMed  Google Scholar 

  75. Perlstein B, Finniss SA, Miller C, Okhrimenko H, Kazimirsky G, Cazacu S, Lee HK, Lemke N, Brodie S, Umansky F, Rempel SA, Rosenblum M, Mikklesen T, Margel S, Brodie C (2013) TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo. Neuro-Oncology 15(1):29–40

    Article  CAS  PubMed  Google Scholar 

  76. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108(42):17450–17455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shapiro B, Kulkarni S, Nacev A, Muro S, Stepanov PY, Weinberg IN (2014) Open challenges in magnetic drug targeting. WIREs Nanomed Nanobiotechnol 7(3):446–457

    Article  CAS  Google Scholar 

  78. Cherry EM, Maxim PG, Eaton JK (2010) Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Med Phys 37(1):175–182

    Article  PubMed  Google Scholar 

  79. Chertok B, David AE, Huang Y, Yang VC (2007) Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 122(3):315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Al-Jamal KT, Bai J, Wang JT, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA (2016) Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 16(9):5652–5660

    Article  CAS  PubMed  Google Scholar 

  81. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4):487–496

    Article  CAS  PubMed  Google Scholar 

  82. Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intracarotid administration. Biomaterials 31:6317–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chertok B, David AE, Yang VC (2011) Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. J Control Release 155(3):393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Driscoll CF, Morris RM, Senyei AE, Widder KJ, Heller GS (1984) Magnetic targeting of microspheres in blood flow. Microvasc Res 27(3):353–369

    Article  CAS  PubMed  Google Scholar 

  85. Marie H, Lemaire L, Franconi F, Lajnef S, Frapart I-M, Nicolas V, Frébourg G, Trichet M, Ménager C, Lessieur S (2015) Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater 25:1258–1269

    Article  CAS  Google Scholar 

  86. Zhao M, Liang C, Li A, Chang J, Wang H, Yan R, Zhang J, Tai J (2010) Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts. Anticancer Res 30(6):2217–2223

    CAS  PubMed  Google Scholar 

  87. Chae GS, Lee JS, Kim SH, Seo KS, Kim MS, Lee HB, Khang G (2005) Enhancement of the stability of BCNU using self-emulsifying drug delivery systems (SEDDS) and in vitro antitumor activity of self-emulsified BCNU-loaded PLGA wafer. Int J Pharm 301(1–2):6–14

    Article  CAS  PubMed  Google Scholar 

  88. Hua MY, Liu HL, Yang HW, Chen PY, Tsai RY, Huang CY, Tseng IC, Lyu LA, Ma CC, Tang HJ, Yen TC, Wei KC (2011) The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 32(2):516–527

    Article  CAS  PubMed  Google Scholar 

  89. Yang HW, Hua MY, Liu HL, Huang CY, Tsai RY, Lu YJ, Chen JY, Tang HJ, Hsien HY, Chang YS, Yen TC, Chen PY, Wei KC (2011) Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials 32(27):6523–6532

    Article  CAS  PubMed  Google Scholar 

  90. Akilo OD, Choonara YE, Strydom AM, du Toit LC, Kumar P, Modi G, Pillay V (2016) AN in vitro evaluation of a carmustine-loaded Nano-co-Plex for potential magnetic-targeted intranasal delivery to the brain. Int J Pharm 500(1–2):196–209

    Article  CAS  PubMed  Google Scholar 

  91. Pardridge WM (2002) Drug and gene delivery to the brain: the vascular route. Neuron 36(4):555–558

    Article  CAS  PubMed  Google Scholar 

  92. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105(3):445–454

    Article  CAS  PubMed  Google Scholar 

  93. Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25(16):2295–2305

    Article  CAS  PubMed  Google Scholar 

  94. Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS, Tseng IC, Wang JJ, Yen TC, Chen PY, Wei KC (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107(34):15205–15210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fan Z, Chen D, Deng CX (2013) Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles. J Control Release 170(3):401–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Lyu LA, Tseng IC, Feng LY, Tsai HC, Chen SM, Lu YJ, Wang JJ, Yen TC, Ma YH, Wu T, Chen JP, Chuang JI, Shin JW, Hsueh C, Wei KC (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro-Oncology 12(10):1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ranney DF, Huffaker HH (1987) Magnetic microspheres for the targeted controlled release of drugs and diagnostic agents. Ann N Y Acad Sci 507:104–119

    Article  CAS  PubMed  Google Scholar 

  98. Jain S, Mishra V, Singh P, Dubey PK, Saraf DK, Vyas SP (2003) RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm 261(1–2):43–55

    Article  CAS  PubMed  Google Scholar 

  99. Bellizzi G, Bucci OM, Chirico G (2016) Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. Int J Hyperth 32(6):688–703

    Article  CAS  Google Scholar 

  100. Silva AC, Oliveira TR, Mamani JB, Malheiros SM, Malavolta L, Pavon LF, Sibov TT, Amaro E Jr, Tannus A, Vidoto EL, Martins MJ, Santos RS, Gamarra LF (2011) Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine 6:591–603

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bellizzi G, Bucci OM (2010) On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia. Int J Hyperth 26(4):389–403

    Article  Google Scholar 

  102. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol 78(1):7–14

    Article  CAS  Google Scholar 

  103. van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Bruck W, von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30(1):52–57

    Article  PubMed  CAS  Google Scholar 

  104. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neuro-Oncol 81(1):53–60

    Article  CAS  Google Scholar 

  105. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103(2):317–324

    Article  Google Scholar 

  106. Muller S (2009) Magnetic fluid hyperthermia therapy for malignant brain tumors—an ethical discussion. Nanomedicine 5(4):387–393

    Article  PubMed  CAS  Google Scholar 

  107. Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358

    Article  CAS  PubMed  Google Scholar 

  108. Tabatabaei SN, Duchemin S, Girouard H, Martel S (2012) Towards MR-navigable nanorobotic carriers for drug delivery into the brain. IEEE Int Conf Robot Autom 2012:727–732

    Google Scholar 

  109. Tabatabaei SN, Girouard H, Carret AS, Martel S (2015) Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release 206:49–57

    Article  CAS  PubMed  Google Scholar 

  110. Dan M, Bae Y, Pittman TA, Yokel RA (2015) Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models. Pharm Res 32(5):1615–1625

    Article  CAS  PubMed  Google Scholar 

  111. Pang S, Koyanagi Y, Miles S, Wiley C, Vinters HV, Chen IS (1990) High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343(6253):85–89

    Article  CAS  PubMed  Google Scholar 

  112. Spencer DC, Price RW (1992) Human immunodeficiency virus and the central nervous system. Annu Rev Microbiol 46:655–693

    Article  CAS  PubMed  Google Scholar 

  113. Nair M, Jayant RD, Kaushik A, Sagar V (2016) Getting into the brain: potential of nanotechnology in the management of neuroAIDS. Adv Drug Deliv Rev 103:202–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108(8):2827–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183(1):661–669

    Article  CAS  PubMed  Google Scholar 

  116. Saiyed ZM, Gandhi NH, Nair MPN (2009) AZT 5-triphosphate nanoformulation suppresses HIV-1 replication in peripheral blood mononuclear cells. J Neurovirol 15:343–347

    Article  CAS  PubMed  Google Scholar 

  117. Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707

    Article  PubMed  CAS  Google Scholar 

  118. Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H, Kaushik A, Jayant RD, Nikkhah-Moshaie R, Roy U, Pilakka-Kanthikeel S, Nair MP (2015) Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J Neurovirol 22(2):129–139

    Article  PubMed  CAS  Google Scholar 

  119. Wen X, Wang K, Zhao Z, Zhang Y, Sun T, Zhang F, Wu J, Fu Y, Du Y, Zhang L, Sun Y, Liu Y, Ma K, Liu H, Song Y (2014) Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS One 9(9):e106652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  121. Jayant RD, Atluri VS, Agudelo M, Sagar V, Kaushik A, Nair M (2015) Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine 10:1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, Nebuloni M, Capetti A, Rizzardini G, Prosperi D, Corsi F (2015) Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine 11:1387–1397

    Article  CAS  PubMed  Google Scholar 

  123. Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ (2002) Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med 50(6):435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Itoh K, Mehraein P, Weis S (2000) Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathol 99:376–384

    Article  CAS  PubMed  Google Scholar 

  125. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127(Pt 11):2452–2458

    Article  PubMed  Google Scholar 

  126. Nosheny RL, Ahmed F, Yakovlev A, Meyer EM, Ren K, Tessarollo L, Mocchetti I (2007) Brain-derived neurotrophic factor prevents the nigrostriatal degeneration induced by human immunodeficiency virus-1 glycoprotein 120 in vivo. Eur J Neurosci 25(8):2275–2284

    Article  PubMed  Google Scholar 

  127. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  128. Pilakka-Kanthikeel S, Atluri VS, Sagar V, Saxena SK, Nair M (2013) Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One 8(4):e62241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Estelrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Estelrich, J., Busquets, M.A. (2021). Magnetic Nanoparticles as Delivery Systems to Penetrate the Blood-Brain Barrier. In: Morales, J.O., Gaillard, P.J. (eds) Nanomedicines for Brain Drug Delivery. Neuromethods, vol 157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0838-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0838-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0837-1

  • Online ISBN: 978-1-0716-0838-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics