Skip to main content

Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method

  • Protocol
  • First Online:
Patch Clamp Electrophysiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2188))

Abstract

Cultured hippocampal slices from rodents, in which the architecture and functional properties of the hippocampal network are largely preserved, have proved to be a powerful substrate for studying healthy and pathological neuronal mechanisms. Here, we delineate the membrane-interface method for maintaining organotypic slices in culture for several weeks. The protocol includes procedures for dissecting hippocampus from rat brain, and collecting slices using a vibratome. This method provides the experimenter with easy access to both the brain tissue and culture medium, which facilitates genetic and pharmacological manipulations and enables experiments that incorporate imaging and electrophysiology. The method is generally applicable to rats of different ages, and to different brain regions, and can be modified for culture of slices from other species including mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hogue MJ (1947) Human fetal brain cells in tissue cultures; their identification and motility. J Exp Zool 106:85–107

    Article  CAS  Google Scholar 

  2. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  Google Scholar 

  3. Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  CAS  Google Scholar 

  4. Muller D, Buchs P-A, Stoppini L (1993) Time course of synaptic development in hippocampal organotypic cultures. Dev Brain Res 71:93–100

    Article  CAS  Google Scholar 

  5. De Simoni A, Griesinger CB, Edwards FA (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol 550:135–147

    Article  CAS  Google Scholar 

  6. Mohajerani MH, Cherubini E (2005) Spontaneous recurrent network activity in organotypic rat hippocampal slices. Eur J Neurosci 22:107–118

    Article  Google Scholar 

  7. Sundstrom L, Iii BM, Bradley M, Pringle A (2005) Organotypic cultures as tools for functional screening in the CNS to act as an important link between high-throughput approaches and animal models. Drug Discov Today Targets 10:993–1000

    Article  CAS  Google Scholar 

  8. Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5:19–33

    Article  CAS  Google Scholar 

  9. Mildner M, Ballaun C, Stichenwirth M et al (2006) Gene silencing in a human organotypic skin model. Biochem Biophys Res Commun 348:76–82

    Article  CAS  Google Scholar 

  10. Mikhaylova M, Bär J, van Bommel B et al (2018) Caldendrin directly couples postsynaptic calcium signals to actin remodeling in dendritic spines. Neuron 97:1110–1125.e14

    Article  CAS  Google Scholar 

  11. Jurado S, Biou V, Malenka RC (2010) A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression. Nat Neurosci 13:1053–1055

    Article  CAS  Google Scholar 

  12. Church TW, Weatherall KL, Corrêa SAL et al (2014) Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur J Neurosci 41:305–315

    Article  Google Scholar 

  13. O’Brien JA, Lummis SCR (2006) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Protoc 1:977–981

    Article  CAS  Google Scholar 

  14. Rathenberg J, Nevian T, Witzemann V (2003) High-efficiency transfection of individual neurons using modified electrophysiology techniques. J Neurosci Methods 126:91–98

    Article  Google Scholar 

  15. Mewes A, Franke H, Singer D (2012) Organotypic brain slice cultures of adult transgenic P301S mice: a model for tauopathy studies. PLoS One 7:e45017

    Article  CAS  Google Scholar 

  16. Humpel C (2015) Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques. Front Aging Neurosci 7:1–10

    Article  CAS  Google Scholar 

  17. Croft CL, Noble W (2018) Preparation of organotypic brain slice cultures for the study of Alzheimer’s disease. F1000Res 7:592

    Article  Google Scholar 

  18. Kunkler PE, Hulse RE, Kraig RP (2004) Multiplexed cytokine protein expression profiles from spreading depression in hippocampal organotypic cultures. J Cereb Blood Flow Metab 24:829–839

    Article  CAS  Google Scholar 

  19. Su T, Paradiso B, Long YS et al (2011) Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res 1385:68–76

    Article  CAS  Google Scholar 

  20. Akassoglou K, Merlini M, Rafalski VA et al (2018) In vivo imaging of CNS injury and disease. J Neurosci 37:10808–10816

    Article  Google Scholar 

  21. Jackson JS, Witton J, Johnson JD et al (2017) Altered synapse stability in the early stages of Tauopathy. Cell Rep 18:3063–3068

    Article  CAS  Google Scholar 

  22. Kuhlman SJ, Olivas ND, Tring E et al (2013) A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501:543–546

    Article  CAS  Google Scholar 

  23. Shim G, Kim D, Park GT et al (2017) Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 38:738–753

    Article  CAS  Google Scholar 

  24. Stepanyants A, Martinez LM, Ferecsko AS, Kisvárday ZF (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci U S A 106:3555–3560

    Article  CAS  Google Scholar 

  25. Xiong G, Metheny H, Johnson BN, Cohen AS (2017) A comparison of different slicing planes in preservation of major hippocampal pathway fibers in the mouse. Front Neuroanat 11:1–17

    Article  Google Scholar 

  26. Bausch SB, McNamara JO (2000) Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures. J Neurophysiol 84:2918–2932

    Article  CAS  Google Scholar 

  27. Noraberg J, Poulsen F, Blaabjerg M et al (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets CNS Neurol Disord 4:435–452

    Article  CAS  Google Scholar 

  28. Okamoto K, Ishikawa T, Abe R et al (2014) Ex vivo cultured neuronal networks emit in vivo-like spontaneous activity. J Physiol Sci 64:421–431

    Article  Google Scholar 

  29. Liu J, Saponjian Y, Mahoney MM et al (2017) Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PLoS One 12:1–25

    Google Scholar 

  30. Lein PJ, Barnhart CD, Pessah IN (2011) Acute hippocampal slice preparation and hippocampal slice cultures. Methods Mol Biol 758:115–134

    Article  CAS  Google Scholar 

  31. Gogolla N, Galimberti I, DePaola V, Caroni P (2006) Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat Protoc 1:1165–1171

    Article  CAS  Google Scholar 

  32. Humpel C (2015) Organotypic brain slice cultures: a review. Neuroscience 305:86–98

    Article  CAS  Google Scholar 

  33. Legradi A, Varszegi S, Szigeti C, Gulya K (2011) Adult rat hippocampal slices as in vitro models for neurodegeneration: studies on cell viability and apoptotic processes. Brain Res Bull 84:39–44

    Article  Google Scholar 

  34. Ting JT, Daigle TL, Chen Q, Feng G (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol 1183:221–242

    Article  CAS  Google Scholar 

  35. Cilz NI, Porter JE, Lei S (2017) A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings. MethodsX 4:360–371

    Article  Google Scholar 

  36. Geiger JRP, Bischofberger J, Vida I et al (2002) Patch-clamp recording in brain slices with improved slicer technology. Pflugers Arch 443:491–501

    Article  CAS  Google Scholar 

  37. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 414:600–612

    Article  CAS  Google Scholar 

  38. Krimer LS, Goldman-Rakic PS (1997) An interface holding chamber for anatomical and physiological studies of living brain slices. J Neurosci Methods 75:55–58

    Article  CAS  Google Scholar 

  39. Pringle AK, Sundstrom LE, Wilde GJCC et al (1996) Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures. Neurosci Lett 211:203–206

    Article  CAS  Google Scholar 

  40. Arsenault J, O’Brien JA (2013) Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 6:1–8

    Article  CAS  Google Scholar 

  41. Andersen P (1983) Basic mechanisms of penicillin-induced epileptiform discharges. Prog Clin Biol Res 124:3–13

    CAS  Google Scholar 

  42. Mtchedlishvili Z, Kapur J (2006) High-affinity, slowly desensitizing GABAA receptors mediate tonic inhibition in hippocampal dentate granule cells. Mol Pharmacol 69:564–575

    Article  CAS  Google Scholar 

  43. Goodkin HP, Joshi S, Mtchedlishvili Z et al (2008) Subunit-specific trafficking of GABAA receptors during status epilepticus. J Neurosci 28:2527–2538

    Article  CAS  Google Scholar 

  44. Driver JE, Racca C, Cunningham MO et al (2007) Impairment of hippocampal gamma (γ)-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). Eur J Neurosci 26:1280–1288

    Article  Google Scholar 

  45. Ullrich C, Daschil N, Humpel C (2011) Organotypic vibrosections: novel whole sagittal brain cultures. J Neurosci Methods 201:131–141

    Article  Google Scholar 

  46. Rafiq A, DeLorenzo RJ, Coulter DA (2017) Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice. J Neurophysiol 70:1962–1974

    Article  Google Scholar 

  47. Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88:221–245

    Article  Google Scholar 

  48. Staal JA, Alexander SR, Liu Y et al (2011) Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice. PLoS One 6:e22040

    Article  CAS  Google Scholar 

  49. Rama S, Zbili M, Bialowas A et al (2015) Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels. Nat Commun 6:10163

    Article  CAS  Google Scholar 

  50. Kruger JM, Favaro PD, Liu M et al (2013) Differential roles of postsynaptic Density-93 isoforms in regulating synaptic transmission. J Neurosci 33:15504–15517

    Article  CAS  Google Scholar 

  51. Kasri NN, Govek EE, Van Aelst L (2008) Characterization of Oligophrenin-1, a RhoGAP lost in patients affected with mental retardation: lentiviral injection in organotypic brain slice cultures. Methods Enzymol 439:255–266

    Article  CAS  Google Scholar 

  52. Routbort MJ, Bausch SB, McNamara JO (1999) Seizures, cell death, and mossy fiber sprouting in kainic acid-treated organotypic hippocampal cultures. Neuroscience 94:755–765

    Article  CAS  Google Scholar 

  53. Mckinney RA, Debanne D, Gähwiler BH, Thompson SM (1996) Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. Nat Med 3:990–996

    Article  Google Scholar 

  54. McKinney RA, Luthi A, Bandtlow CE et al (1999) Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. Proc Natl Acad Sci U S A 96:11631–11636

    Article  CAS  Google Scholar 

  55. Incontro S, Díaz-Alonso J, Iafrati J et al (2018) The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nat Commun 9:1–21

    CAS  Google Scholar 

  56. Lin J, Sann S, Zhou K, Nabavi S (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–253

    Article  CAS  Google Scholar 

  57. Bahia PK, Bennett ES, Taylor-Clark TE (2012) Reductions in external divalent cations evoke novel voltage-gated currents in sensory neurons. PLoS One 7:2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Wellcome Trust and Royal Society Sir Henry Dale fellowship to MGG (104194/Z/14/Z), and the BBSRC (BB/N015274/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Gold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Church, T.W., Gold, M.G. (2021). Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method. In: Dallas, M., Bell, D. (eds) Patch Clamp Electrophysiology. Methods in Molecular Biology, vol 2188. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0818-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0818-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0817-3

  • Online ISBN: 978-1-0716-0818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics